论文部分内容阅读
针对多目标进化算法的种群维护和运行效率相矛盾的问题,提出了一种基于生成树的分布性维护方法,即对整个种群构造一棵生成树,定义一种密度估计指标——树聚集距离,并结合树中的最短树枝和个体度数对种群进行维护。由于树聚集距离和度数具有动态性,每移出一个个体,种群中与之相连个体的信息都会发生相应的变化,因而可即时反映出种群的分布情况。与三个著名的算法NSGA-Ⅱ、SPEA2和C-NSGA-Ⅱ的比较实验表明,该方法能在得到良好分布性解集的同时,能以较快的速度对种群进行维护,具有较好的时间效率。