论文部分内容阅读
采用量子克隆进化算法(QCEA)对径向基函数(RBF)神经网络的参数进行优化学习,并通过对不同样本容量和量子旋转角的实验,将量子克隆进化算法优化的径向基函数神经网络应用于上证指数的预测分析中.仿真实验表明:经量子克隆进化算法优化的径向基函数神经网络将全局搜索和局部寻优有机地结合起来,收敛速度快、种群多样性好,并可有效抑制早熟现象.