人工智能时代的个性化推荐

来源 :上海对外经贸大学学报 | 被引量 : 0次 | 上传用户:aqqz2000
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
个性化推荐通过收集和分析用户的行为信息,预测用户的兴趣偏好并进行推荐,通过影响用户的消费行为,从而产生经济效益.个性化推荐历经了基于统计学、基于内容、基于协同过滤、基于社交网络和混合式推荐的发展历程,虽然已取得了一定效果,但是仍然无法令人满意.随着人工智能时代的到来,多学科多领域的融合为个性化推荐提供了新的思路.本文首先回顾并分析了现有个性化推荐的主要方式、存在的问题和实际需求,然后根据管理学和心理学相关理论模型,提出人工智能时代的个性化推荐需要以人为本,关注用户特征,通过构建用户认知模型,评估用户心理抗拒程度,建立不同用户的消费动机模型,建立更全面的推荐评价体系.
其他文献