论文部分内容阅读
针对特征选择中存在数据缺乏类别信息的问题,提出一种新型的基于改进ReliefF的无监督特征选择方法UFS-IR.由于ReliefF类算法存在小类样本抽样概率低、无法删除冗余特征的缺陷,该方法以DBSCAN聚类算法指导分类,通过改进抽样策略,使用调整的余弦相似度度量特征间的相关性作为去冗余的凭据.实验表明UFSIR可以有效缩减数据维度的同时保证特征子集的最大相关最小冗余性,具有很好的性能.