论文部分内容阅读
为了更好地定量分析矿石样品中铁、钛元素的含量,应用EDXRF分析技术建立了一个基于BP神经网络的预测模型。将矿石样品在EDXRF光谱仪中测得的荧光强度计数作为BP神经网络模型的输入变量,对该模型进行训练和检测。实验结果表明:该BP神经网络预测模型能获得较精确的结果,预测铁含量结果的相对误差不大于2.4%;预测钛含量结果的最大相对误差不大于2.3%;可用于地质矿石样品元素含量的分析预测。