一种利用半监督Fisher判别分析检测推荐攻击的方法

来源 :小型微型计算机系统 | 被引量 : 0次 | 上传用户:mipanglin
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
协同推荐系统容易受到推荐攻击,为了检测该攻击,很多无监督、有监督及半监督检测方法被提出,其中,半监督检测方法的优势在于可以利用无标签用户概貌提升检测性能.然而,已有半监督检测方法的准确率较低,针对该问题,本文提出一种基于半监督Fisher判别分析(Semi-supervised Fisher Discriminant Analysis,SFDA)的推荐攻击检测方法RAD-SFDA来提升半监督检测方法的准确率.首先,利用Fisher判别分析(Fisher Discriminant Analysis,FDA)技术结合有标签用户概貌确定投影向量,在投影后的空间中最大化真实概貌和攻击概貌的离散度的同时最小化同类用户概貌间的离散度;然后,利用主元分析(Princi-pal Components Analysis,PCA)技术从有标签和无标签用户概貌建立的数据集中提取全局结构;最后,综合上述由有标签用户概貌确定的判别结构和由所有用户概貌确定的全局结构确定最佳投影向量,在最终的投影空间中训练贝叶斯分类器检测推荐攻击.在MovieLens数据集上的实验结果表明,本文方法在保持较高召回率的前提下有效提升了准确率.
其他文献
边缘计算作为云计算的协同与补充,未来需要应对物联网50%的细小、实时的数据.同时,边缘AI的兴起,对成本受限的边缘节点的计算资源、存储资源和网络资源提出了更高的要求.如何
随着现代智能交通系统的发展,准确的交通流量预测,尤其是短时交通流量的预测,对实时交通控制的重要性日益凸显.为了解决交通流量数据强非线性对预测精度的影响,本文基于最小
数据发布的隐私保护问题被广泛关注和研究,如何在用户隐私信息不被泄露的情况下保证大量数据的高可用性成为一大挑战.由于大数据的海量性、多样性和高速性,导致传统面向数据