高斯混合多伯努利滤波器基于柯西施瓦兹散度的传感器控制方法

来源 :电子学报 | 被引量 : 0次 | 上传用户:LCW8889
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对多目标跟踪中的传感器控制问题,本文基于有限集统计(FISST)理论,利用高斯混合多伯努利滤波器研究并提出相应的传感器控制策略.首先,文中给出容积卡尔曼高斯混合势均衡多目标多伯努利滤波器(CK-GMCBMeMBerF)的实现形式,并提取高斯混合分量近似多伯努利密度.然后,研究两个高斯混合之间的柯西施瓦兹(Cauchy-Schwarz)散度的求取,推导多目标概率密度变化所对应的信息增益,并以此为基础提出相应的传感器控制策略.此外,结合CK-GMCBMeMBer,详细推导了目标势的后验期望(PENT)准则的
其他文献
大数据分布式存储系统中,修复流水线(Repair Pipelining,RP)减少90%的修复时间,有效地解决由于修复时间开销较大,纠删码不适用于存储热数据的问题.然而,现有的RP存在节点负载
大量研究表明,microRNA(miRNA)在人类复杂疾病研究中发挥着重要作用.识别miRNA与疾病之间的关系对于提高复杂疾病的治疗水平具有重要意义.然而,传统实验方式常受限于小规模和