论文部分内容阅读
近10多年来,许多学者相继开展了应用混沌理论对径流时间序列的预测研究,以Takens嵌入定理为理论基础的混沌局域法是一种简单、有效的预测方法。但是常用的零阶局域法、一阶局域法、加权零阶局域法和加权一阶局域法都是一种单步预测模型,进行多步预测时计算量大且存在误差累积效应。基于相空间重构技术的加权一阶局域法多步预测模型可以克服上述不足。因此,本文首先利用虚假邻域法选取相空间重构的参数时间延迟和嵌入维数,而后依据小数据量法计算最大Lyapnuov指数进行径流时间序列混沌特性的定量识别,最后建立了径流混沌时间序列