修正的UKF滤波时差定位算法

来源 :传感器与微系统 | 被引量 : 0次 | 上传用户:chshlu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了降低到达时间差(TDOA)测距在非视距(NLOS)传播环境中的误差,提出了在强跟踪无迹卡尔曼滤波(UKF)基础上改进的算法。在状态发生突变时,给预测协方差矩阵加入次优渐消因子;对NLOS误差进行正负判断,利用整体偏移法修改滤波增益,但估计协方差矩阵不做改进,以免出现不收敛。实验结果表明:该算法不仅能有效地抑制突变带来的影响,也能高效地消除NLOS误差,提高了NLOS传播的到达时间差定位精度。
其他文献
研究了心电(ECG)信号在身份识别中的应用,提出了基于过完备字典下稀疏编码的手指心电身份识别认证算法。在预处理阶段,对ECG信号进行预处理消噪,去除心电信号里的噪声、基线漂移和心率变异的干扰。在特征提取阶段,提取单周期心电信号构成特征向量并构建字典模型,用核奇异值分解(KSVD)训练成冗余字典,然后对每一部分特征向量进行稀疏编码,实现在该字典上的稀疏表示。在分类识别阶段,利用得到的稀疏系数矩阵构建
在目标跟踪系统中,因通信延迟等原因会出现传感器量测无序地到达融合中心的现象,将这些量测称为无序量测(OOSM)。针对过程噪声、量测噪声相关的非线性系统中出现的无序量测问题