PEG1000强化钾盐催化硫醇β-羟乙基化反应

来源 :精细化工 | 被引量 : 0次 | 上传用户:yy030412
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在常压、无溶剂条件下,以聚乙二醇(PEG)为相转移剂,钾盐为催化剂,碳酸乙烯酯(EC)和硫醇(RSH)为原料合成了β-羟乙基烷基硫醚(RSCH2CH2OH).系统考察了PEG对不同钾盐在RSH的β-羟乙基化反应中的固/液相转移作用以及EC用量对RSCH2CH2OH选择性的影响.通过GC和GC-MS计算与测定RSH转化率、RSCH2CH2OH选择性和副产物.结果表明,PEG本身没有催化活性,与单独加入0.5%(以RSH物质的量为基准,下同)K2CO3相比,同时加入1.0%PEG和0.5%K2CO3可显著提高RSH转化率和反应速率.PEG相对分子质量<1000时,PEG对K2CO3催化活性的强化作用随着PEG链长度的增长而增强.RSCH2CH2OH的选择性随着EC与RSH物质的量比(≥1.02)的增大而降低,副产物为乙烯基烷基硫醚和乙二醇.无溶剂条件下,PEG的加入能有效打破钾盐催化剂与液相反应物之间的相界面限制,增强钾盐催化活性,缩短反应时间,提高产品收率.
其他文献
采用同轴静电纺丝技术制备了用于伤口修复的核壳结构纳米纤维膜,将蛛丝蛋白(Ss)和美洲大蠊提取物(PAE)分别负载于纳米纤维的壳层与核层.采用SEM和TEM对纳米纤维膜的形貌进行了表征,结果显示,纤维具有明显的核壳结构,且随着Ss含量的增加,纤维直径从350 nm降至280 nm,核层直径由120 nm升至140 nm,壳层厚度由115 nm降至70 nm;FTIR结果证明Ss已成功负载到纤维膜中.纤维膜的物理性能测定实验表明,制备的纳米纤维膜拉伸强度可达4.3 MPa,溶胀率可达150%,水蒸气透过率可达
以蓖麻油(CO)、异佛尔酮二异氰酸酯(IPDI)、阳离子扩链剂N-甲基二乙醇胺(MDEA)、封端剂甲基丙烯酸羟乙酯(HEMA)为主要原料,制备一系列紫外(UV)固化型蓖麻油基水性聚氨酯(UWPU)乳液.为进一步提升其抗菌性能,通过引入胍基的方法,制备出抗菌型UV固化蓖麻油基水性聚氨酯(GWPU)乳液.通过耐水性、抑菌圈、抗菌性能测试对制得胶膜性能进行了检测.结果表明,GWPU胶膜相对UWPU吸水率有所上升,但均保持在10%以下;GWPU胶膜抗菌方式为接触性杀菌,同时不具有浸出性;当氨基胍盐含量为UWPU胶
以热塑性聚氨酯(TPU)母粒、碘化镍为原料,通过静电纺丝法制备了基于碘化镍/热塑性聚氨酯(NiI2/TPU)纳米纤维膜,将NiI2/TPU纳米纤维膜贴合在聚酰亚胺(PI)基叉指电极上制得湿度传感器.对纳米纤维膜的表面形貌及微观结构进行了表征分析,并研究了该传感器基于颜色变化和电阻电容响应的湿度敏感特性.结果表明,由于碘化镍的颜色变化特性,随相对湿度(RH)从0增加到97%,NiI2/TPU纳米纤维膜显示了从橘红色到黄绿色的颜色转变.此外,该湿度传感器表现出快速的响应/回复时间(0.9 s/9.9 s)、较
采用溶剂热法制备了坡缕石/Al掺杂CdS复合材料(PGS/CdS-Al),运用XRD、XPS、SEM、UV-Vis DRS及PL对材料的结构、形貌以及光学性能进行了表征.结果表明,Al元素成功掺杂到CdS中,CdS的晶体结构没有改变,但其禁带宽带变宽.可见光照射下,该复合材料对孔雀石绿、亚甲基蓝、甲基橙、结晶紫、罗丹明B有机染料均有光催化降解活性,且对罗丹明B的光催化降解效果最好.光照40 min,质量浓度为0.67 g/L 15%PGS/CdS-Al(15%为PGS的负载量,以生成的CdS质量计)对30
采用阳离子交换树脂催化八甲基环四硅氧烷(D4)、四甲基四氢环四硅氧烷(D4H)和三氟丙基三甲基环三硅氧烷(D3F)开环共聚,以四甲基二乙烯基二硅氧烷(D2Vi)为封端剂,制备了低黏度自交联氟氢乙烯基硅油(F-PMHS).探讨了聚合温度、聚合时间、催化剂用量、催化剂循环等因素对聚合反应的影响.通过FTIR、1HNMR、TGA对共聚物进行分析.结果表明,当聚合温度为60℃、反应时间为6 h、催化剂用量为总单体质量5%时,得到的F-PMHS产率为88.69%,黏度为32.7 mPa·s.将硅油进行涂膜测试,所得
以酸型槐糖脂为表面活性剂配制了一种微乳液用于对含油盐碱性土壤的无害化与资源化处理.固定柴油添加量,通过单因素实验筛选微乳液配方,并优化其清洗工艺参数.结果表明,最佳微乳液〔酸型槐糖脂含量6%(以水的质量为基准,下同)、氯化钠含量1%、柴油含量13.36%〕在液固比(质量比)2:1、35℃、搅拌速率600 r/min、清洗时间20 min的条件下对原油脱除效果最高,脱除率可达95.95%.规模放大实验及重复使用实验表明,将含油土壤处理量放大至300倍,该乳液在上述条件下仍能保持原油脱除率在94%以上;微乳相
以十二烷基苯磺酸钠(SDBS)为表面活性剂配制了微乳液,对金属表面油污清洗进行模拟实验,考察了SDBS、Na2CO3、煤油、正丁醇用量对微乳液清洗率的影响,并从温度稳定区间范围、清洗率随温度及时间变化对不同配方进行考察,最终筛选出一种处理金属表面油污的最佳微乳液配方:SDBS含量为8%(以去离子水的质量计,下同)、Na2CO3含量为1.4%、煤油含量为12.8%、正丁醇含量为6.4%.随后,考察了缓蚀剂的种类及用量对碳钢、黄铜、铝3种金属的防护性能,最终选定以含量0.06%硅酸钠作为微乳液缓蚀剂;对制得的
以椰壳活性炭(BAC)为载体,采用H2还原法制备出高分散性纳米零价铁催化剂〔Fe0/BAC-φH2-θ(t)〕〔φ为H2体积分数(0、0.05%、2%、100%);θ为煅烧温度(600、700、800℃);t为煅烧时间(1、3、5 h)〕,采用固定床反应器考察了催化剂制备过程中H2体积分数、煅烧温度及时间对催化剂分散性、催化还原NO性能、催化剂再生以及CO对催化剂还原NO的影响.采用XRD、TEM、SEM、XPS、N2吸附-脱附对催化剂进行了表征,并对CO还原NO反应机理进行了推测.结果表明,催化剂活性随
对废弃卷烟烟叶进行炭化处理后再引入氨基功能基团制备了氨基化烟叶生物炭吸附剂(ATC),通过SEM、FTIR、XPS对ATC进行了表征,考察了pH、ATC投加量、温度、吸附时间、U(Ⅵ)初始质量浓度对ATC吸附U(Ⅵ)的影响.结果表明,在U(Ⅵ)初始质量浓度为250 mg/L、pH=6、ATC投加量为0.2 g/L、温度为40℃、吸附时间为210 min时,ATC对U(Ⅵ)的最大理论吸附量为495.04 mg/g.吸附动力学符合准二级动力学模型;Langmuir吸附等温模型能更好地描述ATC对U(Ⅵ)的吸附
采用聚乙二醇、Ymer N120、聚丙二醇和异佛尔酮二异氰酸酯为原料,以三乙醇胺作交联剂合成聚氨酯(PU)预聚物,浸入白芨多糖(BSP)和丙烯酰胺(AM)混合溶液,通过自由基聚合制备了负载BSP的PU/PAM双网络水凝胶.采用FTIR、SEM对水凝胶的结构和形貌进行了表征,通过拉力试验机和生物实验对其力学性能和生物性能进行了测试.结果表明,当三乙醇胺用量为多元醇物质的量的60%时,双网络水凝胶具有高溶胀率(256%)的同时保持一定的拉伸强度(1.9 MPa)和高压缩强度(22.7 MPa).双网络水凝胶具