论文部分内容阅读
基于模糊SVM与周期分析的股票预测方法通过选取曲率变化大、形式简单的幂函数作为候选隶属度函数,并采用格子搜索法寻找最优参数,确定出最优模糊隶属度,同时又结合寻找股票波动的工具:市场周期分析法.仿真实验表明:在利用模糊SVM训练时间序列数据集时,该方法比目前常用的选择模糊隶属度、以及单独用最优模糊隶属度方法的效果都好.