论文部分内容阅读
提出了一种针对离群数据规则挖掘的决策树构造方法。通过给出一个平均致密度的新定义和对离群数据产生机制的深入分析,提出离群数据的致密度往往比正常样本数据高的新认识,指出离群数据本质上也是不平衡数据,基于此提出了一种自动标记离群数据的新算法,并进一步在该算法和C4.5算法部分功能的基础上提出了一种基于离群数据自动标记的模糊决策树构造方法。仿真实验结果表明,该方法具有高效的离群数据规则挖掘能力,能处理不平衡数据,优化决蓑树的结构,挖掘出更高信任度的规则,有一定的实用价值。