基于BERT与记忆网络的长文本方面级情感分析

来源 :传感器与微系统 | 被引量 : 0次 | 上传用户:liongliong429
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目前在方面级情感分析(ABSA)方法中,利用上下文或方面短语的平均值来计算方面短语或上下文之间注意力得分的方法往往会产生较大的信息损失,导致模型在长文本分类上的性能降低.为此,研究了一种建立在BERT表示上的记忆网络模型,BDMN.首先,把句子构造成多[CLS]的Token嵌入形式,然后,从BERT输出中获取到各短句的初始化向量,将其作为记忆体与方面短语的[CLS]向量进行充分注意力交互,最后,拼接输出注意力层所有短句的方面短语表示作为最终的情感分类特征向量.在AI Chal-lenger 2018细粒度情感分析数据集上进行了模型评估,与目前的主流模型相比,其效果达到了最好.
其他文献
基于地磁传感器的物联网(IoT)感知技术被广泛应用于列车定位导航、速度监测和安全控制等场景中.然而,半导体材质温度敏感性影响到地磁传感器量测数据的精准性.在充分考虑铁路物联网感知设备能量和资源受限性的基础上,提出基于最小二乘法多项式曲线拟合构建轻量级温度补偿机制,以此提升地磁传感器铁路物联网感知设备在复杂环境下的稳定性.实验表明:所提温度补偿机制具有资源占用率低、微能耗和精准性高等特性.
针对卷积神经网络(CNN)中卷积核的多样性导致加速器难以实现高效计算的问题,提出了一种可重构卷积神经网络加速器实现方法.加速器包括18个处理引擎(PE),每个PE包含9个乘累加单元,3个PE构建一个5×5卷积核实现卷积核重构,调度器通过控制每层所需的卷积核大小和通道数分配PE实现卷积处理.加速器支持常见的3×3,5×5卷积核的网络模型,加速器采用数据复用以及并行处理的设计方法,有效降低了存储访问次数,提高了加速器的计算高效性.通过对AlexNet进行验证,实验表明:使用XC7Z045平台在150 MHz的
针对排放控制区的船舶尾气难以监控的问题,设计了一种基于STM32的船舶尾气排放监测系统.系统硬件主要由STM32微控制器、气体传感器、温湿度传感器、GPS定位模块以及通信模块组成.系统以无人机搭载的方式,实时采集尾气中SO2和CO2气体体积分数数据,并将检测数据通过4 G网络实时发送到服务器.实验结果表明:该系统运行稳定可靠,能够有效协助海事监管人员监控港区船舶的尾气排放情况.