CAUXT:帮助研究人员在感兴趣的情境中采集用户体验数据

来源 :计算机科学 | 被引量 : 0次 | 上传用户:afengyu66
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着移动互联技术的快速发展和普及,产品的使用越来越无处不在,这也要求用户体验研究必须与情境紧密关联。但对于用户体验研究,现有的技术手段在识别和感知研究人员感兴趣的情境上还存在一定的困难,较难根据感兴趣的情境获取用户体验数据。其原因在于:现有系统工具的情境感知与用户体验研究人员的情境感知存在较大差异。目前,用户体验领域缺乏解决此类问题的研究,现有相关领域的此类研究也都是倾向于从算法和计算效率的角度来提升系统的数据采集能力,未从用户体验研究人员的情境感知机理角度来解决问题。文中创新性地通过借鉴认知科学和人机交
其他文献
传统的信息推送服务普遍缺少对社交用户具体情况的考虑,存在推荐信息针对性不强、系统转化率低等问题。针对上述问题,提出了一种基于用户画像的智能信息推送方法。借助智慧学
构件系统演化一致性是确保演化操作可靠的必要条件,若一致性得不到满足,则会致使演化后的系统达不到既定的功能目标。针对该问题,文中提出基于接口、流程结构、内部行为的构件系
为解决传统推荐系统中存在的冷启动难题,基于距离反映偏好的假设提出了一种融合矩阵分解与距离度量学习的社会化推荐算法。该算法同时对样本和距离度量进行训练,在满足距离约束
函数P-集合是P-集合的函数形式,是通过改进P-集合得到的一个具有动态特征、规律(函数)特征的信息规律模型。在函数P-集合中,函数的属性满足数理逻辑中的合取范式。函数逆P-集
将车联网中高维的时空特征嵌入到低维的特征语义词袋是一种典型的聚类问题。谱聚类因其计算简单且有全局最优解的特点而备受关注,但是关于其聚类数目的研究工作相对较少。针
针对现有图像修复算法存在受损区域的形状和大小受限以及修复痕迹明显、修复边缘不连续的问题,文中提出一种基于生成对抗网络的图像修复方法。该方法采用生成对抗网络(Generative Adversarial Networks,GAN)这种新的生成模型作为基本架构,结合Wasserstein距离,同时融入条件对抗网络(CGAN)的思想;以破损图像作为附加条件信息,采用对抗损失与内容损失相结合的方式来训练网