论文部分内容阅读
针对初始点选择不当导致K—means陷入局部最小值问题,提出一种结合自适应mean-shift与最小生成树(MST)的K—means聚类算法。将数据对象投影到主成分分析(PCA)子空间,给出自适应mean.shift算法,并在PCA子空间内将数据向密度大的区域聚集,再利用MST与图连通分量算法,找出数据的类别数和类标签,据此计算原始空间的密度峰值,并将其作为K.means聚类的初始中心点。对K—means的目标函数、聚类精度和运行时间进行比较,结果表明,该算法在较短的运行时间内能给出较优的全局解。