论文部分内容阅读
针对支持向量机(SVM)学习参数难以确定的不足,利用果蝇优化算法(FOA)搜寻SVM学习参数——惩罚因子和核函数参数,提出FOA-SVM预测模型,并构建基于粒子群优化(PSO)算法、遗传优化(GA)算法搜寻SVM学习参数的PSO-SVM和GA-SVM模型作为对比,以云南省董湖站年径流预测进行实例研究。结果表明,FOASVM模型预测精度优于PSO-SVM和GA-SVM模型,具有较高的预测精度和泛化能力。