论文部分内容阅读
蚁群算法是一种优秀的拟生态启发式算法,具有较强的鲁棒性,易与其它拟生态算法结合等特点。不过,它也存在着容易陷入局部最优、收敛速度慢等问题。通过分析蚁群算法的运行机制,得出了蚁群算法易陷入局部最优、收敛速度慢等不足产生的原因,针对这些不足,通过修改基本蚁群算法中信息素的更新规则,使得每轮搜索后信息素的增量能更好地反映解的质量,以加快收敛;同时引进了路径信息素平滑机制以平衡路径上的信息量。对TSP问题的仿真实验结果表明,改进后的算法加快了收敛速度,提高了全局搜索能力。