波纹阵列式柔性压电俘能器动力学分析与输出特性研究

来源 :武汉理工大学 | 被引量 : 0次 | 上传用户:ananqiqi
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
电能供应是各类可移动和无线电子设备发展的基础。目前,这类设备的发展逐渐趋于轻薄化、小型化、便携性、高计算能力和低功耗通信,然而电池体积较大且容量有限成为制约系统性能和使用寿命的关键因素。因此,收集环境中的能量来解决电子设备无限续航问题受到科研人员越来越广泛的关注。其中,柔性压电俘能器结构简单,质量轻,形变能力好,在能量收集领域具有广阔的应用前景。考虑到柔性压电俘能器输出功率和对环境的敏感性难以满足应用需求,本文分别从柔性材料、俘能结构和能量管理电路三个方面展开研究,具体工作如下:(1)研究了柔性压电材料的制备工艺,基于静电纺丝技术研制了更轻质,柔韧性更好的PVDF柔性压电纤维膜,并对微观形貌和晶型进行了表征。利用扫描电子显微镜分析了不同工艺参数对PVDF纤维形貌和直径的影响,进一步利用X射线衍射仪观察了相应参数下纤维的晶相结构转化,从而得到了溶剂配比、溶液浓度、注射速度,纺丝电压等工艺参数对纤维膜晶相结构的影响。(2)提出了一种轴向激励作用下工作的波纹阵列式柔性压电俘能器结构。基于Euler-Bernoulli梁理论和D’Alembert原理,分析了轴向载荷激励模式下俘能器阵列单元的机电耦合行为,建立了考虑动态效应的耦合分布参数模型。通过Matlab进行数值模拟,分析了激励频率、负载阻值及压电材料的厚度对俘能器阵列单元输出性能的影响。(3)在阵列单元输出特性的基础上,利用电路仿真软件,分析了阵列结构中能量管理电路和压电振子差异性对波纹阵列式压电俘能器输出功率的影响。首先基于串联和并联连接方式对阵列式压电俘能器负载特性进行仿真分析;其次,引入不同接口电路,得到不同接口电路对阵列式压电俘能器回收功率的提升幅度。最后,针对阵列中单元压电振子之间存在的输出电压幅度和相位差异情形进行了仿真分析。(4)为探究波纹阵列式柔性压电俘能器输出特性,搭建了实验平台。针对单个压电俘能器及横向与纵向两种阵列结构,制作了相应俘能器样机及夹具,并分别进行扫频和阻抗匹配实验。结果表明,相比于单个俘能器,阵列式结构的输出功率明显提高,而且纵向阵列式俘能器输出电压和功率均高于横向阵列式俘能器,可点亮21盏LED灯。
其他文献
为改善钙钛矿太阳能电池(Perovskite Solar Cells,PSCs)吸收光谱局限于可见光范围的问题,本文从稀土掺杂发光材料的上下转换并行发光性能方面进行考虑,通过优化稀土离子之间的掺杂比例,制备出上下转换并行发光性能优良的NaGdF4:Yb3+,Er3+@NaGdF4:Eu3+核壳稀土颗粒,并将其应用到钙钛矿太阳能电池的介孔层中。深入研究了其上下转换并行发光在PSCs中的作用机理,从而
学位
物联网、自动驾驶、虚拟现实等新型业务对第五代移动通信技术(the fifth Generation wireless systems,5G)提出了更高的要求。毫米波(Millimeter-wave,mm Wave)由于其丰富的频谱资源,被作为解决5G通信中高速率、低时延的关键技术之一。研究毫米波在各类典型环境中的传播特性,对毫米波无线通信系统的设计和部署有着指导性作用。本文选择室内环境开展了面向5
学位
谱域光学相干层析成像(Spectral Domain Optical Coherence Tomography,SDOCT)技术是一种广泛应用于生物医疗科学领域的成像技术,该技术具有分辨率高、安全、不直接接触病体等优点。受限于OCT系统的成像深度以及OCT探针的尺寸,使其在在体探测领域的应用大大减少,因此,研究一种小尺寸OCT探针以及高成像深度、高分辨率的SD-OCT系统意义重大。本文对OCT探针
学位
矢量涡旋光束是一种同时具有偏振态空间变化和螺旋波前结构的新型光束。由于其新颖的光学特性,矢量涡旋光束在超分辨率成像、精密度量、光通信和激光加工等领域有着巨大的应用前景。早期人们对矢量涡旋光束的研究主要集中在柱矢量涡旋光束,随着全庞加莱球、高阶庞加莱球等偏振表征方式的提出,人们已经创建了许多具有奇特结构的矢量涡旋光束。与传统的均匀偏振光束不同,矢量涡旋光束在聚焦场、散射场和倏逝波等高度非均匀场中可以
学位
光纤端面横截面积小、纵横比大,是一个独特的非常规微纳器件集成平台。随着纳米加工工艺技术的发展和进步,在光纤上制备微纳光学器件,发展更为先进的全光纤技术,能够在光学滤波和光学传感等多个领域实现巨大的价值。本论文总结了光纤微纳结构的发展现状,着重介绍了基于光纤端面微纳结构的应用,并对比了光纤端面微纳结构的加工工艺,为本文中微纳谐振腔和传感单元的实现提供基础。本论文在光纤端面上制备金属光栅,并与金属薄膜
学位
声压传感技术在地质勘探、环境检测等领域有着重要的应用。传统光纤声压传感技术采用的强度解调方法易受到光源光强抖动影响,使其难以一直稳定工作在正交相位点(Q点),并且强度解调法探测范围是有限的,而相位解调方法则没有这些限制。论文结合膜片式光纤Fabry-Perot(F-P)声压传感单元和基于光学游标效应的相位解调算法,实现声压传感器测量性能的提升。论文从高灵敏度、微型声压传感需求出发,基于多光束干涉理
学位
目前钙钛矿太阳能电池的光电转换效率发展迅速,并且由于其工艺简单、成本低和光电性能优异等特点引起了众多太阳能电池科研工作者的研究热情。传统的钙钛矿太阳能电池的光吸收层材料为甲基碘化铅铵(CH3NH3Pb I3),由于其固有带隙只能吸收780 nm以下可见光,对占据太阳光光谱43%的红外光无法进行有效的利用,影响了钙钛矿太阳能电池光电性能的进一步提升。为了克服这个缺陷,我们设计并制备了具有荧光增强效应
学位
寻找夸克胶子等离子体(QGP)是高能重离子碰撞的主要研究目标之一,探寻QGP的存在和研究QGP的性质一直是高能物理学的热点,对QGP的研究可以加深我们对自然界微观相互作用的理解。此外,宇宙极早期的存在形式被认为是类QGP形式,因此QGP的研究对宇宙早期演化的认识也有着十分重要的作用。随着实验技术和理论研究的发展,2000年,美国布鲁克海文国家实验室(BNL)宣布发现了QGP的存在,并显示QGP几乎
学位
在钙钛矿太阳能电池中,银(Ag)作为一种常见的金属电极,却容易被钙钛矿分解后的卤族化合物腐蚀,其电阻会随腐蚀程度的加重而增加。因此,本论文以超薄金属银电极为研究对象,将其作为两种常规电池结构中的阴极或阳极,研究工作条件下的电极稳定性,分析了Ag电极被腐蚀的机理,提出器件在工作中存在的稳定性问题。本论文主要工作包括:首先,建立了钙钛矿太阳能电池的一维结构模型,仿真了器件在光照或偏压下的能带、载流子浓
学位
在能源问题日渐凸显的今天,世界各国都在积极探索低碳能源转型,在这个过程中,风力发电被认为是最有前途的技术之一。作为风力发电的动力源和主要干扰源,风的特性在很大程度上也能代表风机的运行特点。变桨距型风机因其能够适应风随机变化的特点,正逐步取代定桨距型风机。风电系统在运行区域Ⅲ的控制目的是维持系统输出功率不变,变桨距型风机可以利用变桨系统来完成此目标。直驱式风电系统因其结构的简单性以及良好的控制特性正
学位