论文部分内容阅读
甲醛是室内空气污染的主要组成部分,严重危害着人类的健康,而随着装修业的迅速发展,室内空气品质更成为人们关注的焦点。传统的各种空气净化方法都存在着各自的局限性,寻求传统空气净化技术的结合以克服彼此缺点来提高污染物的去除效果对于提高室内空气品质具有十分重要的意义。光催化技术在污染物浓度高,流速低的情况下能够有效地去除污染物,而对于室内污染物浓度低、需要快速达到净化要求的室内空气净化却难以满足;低温等离子体技术产生的高能粒子在可去除污染物的同时,能够激发催化剂,进而产生可与污染物作用的中间官能团,提高污染物的去除效果,但不足之处会有超过国标的臭氧产生。本文将两种净化技术相结合,克服过量臭氧产生的同时提高污染物处理量,为空气净化器的制作提供设计依据。本文在分析等离子体产生方式及产生机理的基础上,选择了直流电晕放电方式作为等离子体的产生方法,并根据直流电晕产生要求,制作了线-板、线-线、针-板三种产生等离子体的电极结构。通过实验对比表明线-板电极结构为直流电晕放电等离子体产生的最佳电极结构;在总结光催化技术与活性炭吸附技术相结合去除室内污染物研究的基础上,本文将低温等离子体技术与光催化技术和活性炭吸附技术相结合,通过实验探讨了湿度、流速、初始浓度等对单独低温等离子体、单独光催化、及结合作用对污染物甲醛去除的影响,并对比了三者作用时的处理量,结果表明结合技术可有效提高污染物甲醛的去除效果;鉴于结合作用对污染物去除量提高的有效性,本文将低温等离子体技术、光催化技术和活性炭吸附技术结合在一起,自制了一台用于小空间空气净化的小型空气净化器,通过实验分析了空气净化器对污染物甲醛的去除效果,结果发现,自制小型空气净化器对甲醛有较好的去除效果;由于低温等离子体在产生过程中,会有超过国标规定浓度的臭氧产生,本文通过实验分析了影响臭氧分解的外在因素,实验结果表明,活性炭的存在和纳米TiO2的存在对于臭氧的分解能够发挥重要作用,对于密封空间会有聚集的过程,但通过在活性炭网上负载对臭氧分解能力更强的催化剂MnO2即可有效抑制二次污染的产生。