菜蛾盘绒茧蜂多分DNA病毒复制及组装机制研究

来源 :浙江大学 | 被引量 : 0次 | 上传用户:hermes262
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
寄生蜂是一类营寄生生活的膜翅目昆虫,其寄主大部分为鳞翅目害虫。菜蛾盘绒茧蜂Cotesia vestalis是世界性十字花科蔬菜害虫小菜蛾Plutella xylostella的一类优势寄生蜂。其成功寄生需要精准调控寄主的生长发育和免疫,这些功能的实现主要依赖于寄生蜂体内携带的多种寄生因子,包括多分DNA病毒(Polydnavirus,PDV)、毒液、畸形细胞等。其中PDV是稳定整合在寄生蜂基因组上的一类共生病毒,仅能特异地在雌性寄生蜂卵巢的卵萼细胞(calyx cell)内发生复制和组装。PDV前病毒包括两部分,一是能够形成环状的双链DNA分子,此为成熟病毒粒子的基因组成分,另一部分功能为辅助病毒复制、组装并成熟,本研究统称这类基因为内源病毒元件(endogenous virus elements,EVEs)。一直以来,对PDV的研究主要围绕PDV环状基因组中的毒性基因对寄主昆虫的生理调控,而对PDV在寄生蜂体内的复制和组装的研究则相对较少。因此,本研究以菜蛾盘绒茧蜂及其携带的PDV(Cotesia vestalis Bracovirus,CvBV)为对象,通过基因组、转录组、蛋白组、绝对定量、RNA干扰、透射电镜等多组学和多种分子生物学技术,围绕CvBV在寄生蜂卵巢内的复制和组装机制展开研究。获得主要研究成果如下:1)明确CvBV复制和组装的动态过程。利用透射电镜及绝对定量的方法,阐明了CvBV复制和组装与寄生蜂卵巢发育的关系,明确了CvBV复制开始节点为寄生蜂蛹期第2.5天。详细展示了CvBV病毒组装的动态过程,发现CvBV于3日龄雌蛹的卵巢内出现少量组装,到蛹期第4天达到组装高峰期,羽化1天后病毒粒子成熟,卵萼内腔中CvBV丰度达到最高。2)明确CvBV复制和组装相关的EVEs的数量和表达动态。通过对菜蛾盘绒茧蜂基因组及转录组的数据分析,明确了菜蛾盘绒茧蜂基因组中共有73个保守的EVEs,获得了它们的全长序列,并进一步结合质谱分析对CvBV的结构蛋白和其它辅助组装的基因进行了鉴定,发现26个可能为其结构蛋白。表达谱分析表明EVEs在卵巢内的表达模式可分为两种:一类包含病毒DNA复制和病毒RNA转录调控相关基因,这部分基因在蛹早期开始表达,并在3日龄雌蛹的卵巢内达到最高峰,随后开始下降,此类基因称之为早期表达基因。另一类包括结构蛋白和组装相关基因,这部分基因的表达从2日龄雌蛹开始,并在在4日龄雌蛹的卵巢内达到峰值,到1日龄雌成虫体内出现缓慢下调,该类基因称为晚期表达基因。3)明确多个关键EVEs在CvBV复制和组装过程中的作用。通过RNA干扰等技术对24个EVEs在CvBV复制和组装过程的作用进行了探究,其中3个和病毒DNA复制相关(helicase、integrase-1和integrase-2),3个和病毒RNA转录调控相关(p47、lef-9和lef-5),8个为病毒衣壳组分(vp39、PMV、Hz NVorf9-1、Hz NVorf9-2、Hz NVorf106、38k、27b和K425_459),5个为病毒囊膜结构蛋白(11k、17a-1、35a-1、35a-2和K425_461),3个与衣壳组装相关(vlf-1、Hz NV140-1和Hz NVorf140-2),1个负责病毒结构成分(衣壳与囊膜)运输(Hz NVorf64),1个为辅助侵染因子(vp91)。4)明确蜕皮激素(20E)在CvBV复制和组装过程的调控作用,并鉴定了下游调控因子。发现20E在寄生蜂雌蛹卵巢内的丰度变化为早期(1-2日龄蛹)较高,蛹期第3天开始下调,此变化趋势正好和CvBV组装相关的晚期基因表达模式相反。通过体外添加20E活体培养卵巢的方式,明确了较高浓度的20E能够显著抑制EVEs相关基因的表达,进一步通过卵萼区转录组测序及RNA干扰方法明确了20E通路下游转录因子E93能够抑制vp39、38k和vlf-1基因的表达。综上,本研究表明,CvBV的复制和组装过程需要多个基因在寄生蜂蛹期协同作用,包括调控病毒基因表达的相关基因以及病毒结构蛋白等。本研究系统地对这些基因进行全基因组的鉴定,并利用RNA干扰等方法对其功能进行系统地探究,初步揭示了CvBV复制和组装的复杂过程。此外,本研究首次发现了20E通路对CvBV组装相关基因的调控作用。这些新的发现不仅提升了对PDV复制和组装机制的认知,也对深入探究PDV的起源和进化具有重要的参考意义。
其他文献
细胞的增殖、扩张与分化是植物生长发育的重要细胞学基础。这一系列细胞学事件与细胞壁代谢之间有着密切的联系。果胶作为双子叶植物初生细胞壁的主要组分,其合成、修饰与降解代谢通过影响细胞壁的流动性和可延展性,参与着植物生长发育的众多环节。因此,研究果胶代谢有助于明确细胞壁在植物生长发育历程中的作用,同时为农作物重要经济性状和育性的精准调控提供理论依据。现有研究表明多聚半乳糖醛酸酶(polygalactur
水稻条纹叶枯病是我国水稻上重要的病毒病害,它是由水稻条纹病毒(rice stripe virus,RSV)侵染水稻引起的,其对我国乃至亚洲的水稻生产造成了严重的危害。研究RSV编码的蛋白与寄主植物因子之间的互作从而明确其致病机理,对于水稻条纹叶枯病的防控具有重要的意义。由于植物细胞被坚固的细胞壁(cell wall,CW)所包裹,病毒难以在细胞间进行运动,为了完成系统侵染,植物病毒通常会编码一个甚
甲氧基丙烯酸酯类杀菌剂是一类以甲氧基丙烯酸酯为活性基团,可通过与真菌线粒体复合体III中的细胞色素bc1的Qo位点相结合来阻断呼吸电子链传递达到杀菌效果的线粒体呼吸作用抑制剂。因其高效广谱的杀菌活性,甲氧基丙烯酸酯类杀菌剂自开发以来便在全球范围广泛使用。与此同时,多种植物病害对其产生了抗药性,且不合理使用造成的农药残留问题以及对非靶标生物的威胁也日益严峻。因此,深入研究甲氧基丙烯酸酯类杀菌剂的环境
水稻条纹叶枯病是由水稻条纹病毒(Rice stripe virus,RSV)侵染引起的一种重要的病毒病害。RSV侵染寄主后造成严重症状,甚至死亡,对水稻的生产造成严重的影响。研究RSV与植物寄主之间的互作模式,挖掘植物寄主潜在的抗病基因,能够为病害防治措施的制定以及培育抗病种质资源提供理论支持,对病害的防治以及水稻生产具有重大意义。Ferredoxin 1(FD1)编码植物光合作用电子传递链中电子
烟曲霉(Aspergillus fumigatus)对医用三唑类抗真菌药物如伊曲康唑、伏立康唑和泊沙康唑的抗性问题日益突出,是导致侵袭性曲霉病(Invasive aspergillosis,IA)临床治疗失败的主要原因,其抗性来源和相关机制备受关注。为了探究农用三唑类化合物的使用与烟曲霉抗药性之间的潜在联系,本文在确认医院周边环境土壤中抗性烟曲霉存在的基础上,探究了不同种植条件下戊唑醇使用可能导致
双生病毒是一类在全世界广泛发生的植物单链环状DNA病毒。其中菜豆金黄花叶病毒属病毒种类最多,危害最为严重,由其介体昆虫烟粉虱特异性传播。该病毒属病毒根据基因组的不同可分为单组份病毒和双组份病毒。双组份病毒包含两条单链环状DNA分子,DNA-A和DNA-B;单组份病毒仅包含一条单链环状DNA分子。部分单组份病毒伴随有DNA-β,称为β卫星分子。植物介导的菜豆金黄花叶病毒属病毒-烟粉虱互惠共生是造成植
内生真菌是至少生活史的一部分能侵染定殖在健康植物组织中,宿主无明显病症的一类真菌。内生真菌在与植物互作的过程中,产生了许多有意义的生物学功能。首先部分内生真菌的定殖会诱导植物产生系统抗病性,从而抵抗病原真菌、病毒、细菌等的侵害。同时,它产生的一些毒素,可以防止宿主免受食草动物、昆虫的取食。当植物面临非生物胁迫,如旱涝、重金属或高低温等,内生真菌可以通过调控植物的生理生化反应来帮助其渡过不良环境。另
随着测序技术以及宏病毒组(Virome)的发展,越来越多的新病毒被发现。寄生蜂是昆虫中物种最为丰富的生物类群之一,其上也存在着很多病毒。蝇蛹金小蜂(Pachycrepoideus vindemmia Rondani,1875)是蝇类蛹期外寄生蜂,寄主范围广泛,包括果蝇、实蝇、家蝇等,是一种有巨大开发潜力的生物防治资源。本论文针对在蝇蛹金小蜂体内发现的一种新型小RNA病毒RoWV-1展开了系列的研究
水稻是全世界最重要的粮食作物,但由灰飞虱以持久增殖型方式传播的水稻黑条矮缩病毒(Rice black-streaked dwarf virus,RBSDV)严重危害水稻,并每年造成巨大的粮食产量损失。自噬作为一种先天性免疫在抵抗病毒入侵中发挥重要作用,而病毒在与寄主相互博弈过程中进化出逃避自噬或者抑制自噬机制而实现侵染,有些病毒甚至利用寄主的自噬体膜和自噬机制促进其繁殖、扩散。RBSDV侵染能否引
翅多型现象是昆虫表型可塑性的一种重要表现。褐飞虱(Nilaparvata lugens)是一种典型翅二型昆虫,能够产生长翅、短翅两种成虫。长翅型褐飞虱具有发育完全的翅和间接飞行肌,能够长距离飞行,有助于种群扩散;短翅型褐飞虱则具有更强的繁殖力,利于种群在居留地快速繁殖。褐飞虱若虫根据环境条件变化,进行扩散与生殖之间的权衡以维持种群延续。虽然前人以具有多型现象的直翅目、鞘翅目、半翅目昆虫为模型,对组