【摘 要】
:
随着无人机技术的不断进步,多无人机协同对地任务规划在现代战争中的地位日益凸显,其规划结果优劣将直接影响无人机整体作战效能。多无人机协同对地任务规划包含两阶段:第一阶段任务分配,即给无人机合理的指派任务;第二阶段航迹规划,即给无人机规划出能安全抵达对地任务目标点的可飞航迹。本文结合某无人机仿真平台的研究,对相关问题展开研究,主要工作内容如下:(1)针对传统合同网算法在解决多无人机任务分配中存在的资源
论文部分内容阅读
随着无人机技术的不断进步,多无人机协同对地任务规划在现代战争中的地位日益凸显,其规划结果优劣将直接影响无人机整体作战效能。多无人机协同对地任务规划包含两阶段:第一阶段任务分配,即给无人机合理的指派任务;第二阶段航迹规划,即给无人机规划出能安全抵达对地任务目标点的可飞航迹。本文结合某无人机仿真平台的研究,对相关问题展开研究,主要工作内容如下:(1)针对传统合同网算法在解决多无人机任务分配中存在的资源不均衡、实时性差、整体效能低等问题,本文结合多无人机任务分配需求,对合同网算法进行了改进。首先,为得到贴合实际的任务分配模型,本文在构建模型时考虑了战场环境、任务需求及无人机性能等条件。其次,为了使模型具备实时监测能力,本文在传统合同网算法基础上增加“状态更新”和“心跳保持”两个步骤。相较于只能进行离线任务分配的传统合同网方法,改进后的方法能够展开离线和实时两种模式的任务分配工作。再次,为了使模型能够在多约束条件下取得较高效能,本文引入多指标约束的效能函数,具体来讲,该函数考虑了任务目标收益价值、飞行航程和无人机所受威胁程度等评价指标。最后,为提高模型的全局负载能力,本文引入负载均衡机制,并在任务分配时增加任务买卖和任务交换等调配操作。实验结果表明,本文提出的模型与传统方法相比具有更好的全局负载均衡效果和更短的时间开销,且具备实时任务分配能力。(2)针对传统粒子群算法在解决多无人机航迹规划问题中存在的实时性较差、收敛慢、容易陷入局部最优等问题,本文结合实际航迹规划需求,对传统粒子群算法进行了改进。首先,本文通过最小曲面方法和半球模型对威胁区域建模并二维投影;其次,为解决非线性函数自适应策略收敛慢问题,本文设计了线性递降的自适应策略去逼近粒子群参数最佳值,同时还增添了适应度函数和多约束条件;再次,为了提高传统粒子群算法的求解效率,本文参考K均值算法将粒子群划分为多个子群,参考小生境算法从若干子群中分别选取最优个体组成小生境群体;为解决传统粒子群算法存在的局部最优问题,参考了模拟退火算法跳出局部最优的机制,从而提出基于传统粒子群改进后的混合粒子群算法;最后,基于Dubins曲线对航迹进行平滑处理。通过多场景实验表明,相较于传统粒子群算法,混合粒子群算法能以更快的收敛速度求解出全局最优解,适用于多种场景下的航迹规划问题求解,并能进行实时航迹规划。(3)针对仿真平台和任务规划不匹配问题,本文基于任务规划需求,在整合仿真平台和任务规划过程中新增相应接口;其次,基于该平台,成功实现某蜂群论证仿真推演项目,应用了本文所提的任务分配和航迹规划方法,取得良好的任务推演效果;最后,通过实验结果表明,该平台的规划效果和时间均能满足实际任务需求,适用于协同对地作战任务的任务规划实验,具备良好的工程应用价值。
其他文献
国画在传承的基础上不断创新,其中工笔画和水墨画成为当今绘画的主流。在传统国画中,花卉的描写是一种重要而经典的表现形式。因此,本文主要针对国画花卉的智能创作开展了一系列研究工作。工笔画在同白描有着同样精确笔触的基础上,通过大量的色彩和精确的笔触来实现对绘画对象的模拟。水墨画更加关注水墨色彩的变化,强调图像浓淡与枯润度表达的和谐性,通过有限的色彩和自然流畅的笔触实现写意的表达。从传统的基于机器学习的方
随着智能监控领域朝全天候化、多场景化的方向发展,在可见光摄像头已有一定部署基础的前提下,红外摄像头也正在被广泛应用。基于可见光与红外图像的跨模态行人重识别受到了越来越多的关注。一方面,通过行人检测得到准确的检测边界框图像作为输入,是行人重识别在实际应用中表现良好的重要基础,然而目前大部分行人检测研究集中于可见光图像而忽略了红外图像。由于不同模态图像本身存在的差异,将可见光行人检测成果直接迁移至红外
图像语义分割是指根据图像中像素的语义信息对图像进行分类分割的方法,是计算机视觉领域的一项重要任务。基于深度学习的图像语义分割网络近年来得到快速发展,但仍存在参数量以及计算量大,模型较为复杂,以及不能很好地处理图像中的小目标物体,模型分割精度很难提升等问题。本文针对当前的语义分割网络参数量和计算量大以及小目标物体的语义分割问题展开研究,主要工作和创新点如下:1、针对网络参数量以及计算量大的问题,提出
预测性维护(Predictive Maintenance,Pd M)技术在航空航天、轨道交通、机械装备等领域应用广泛,是实现工业现代化的关键技术之一。在“中国制造2025”和“工业4.0”的战略背景下,工业设备正日趋复杂化,工作环境也日渐恶劣。Pd M技术依据设备或系统的传感器监测数据,对其剩余使用寿命(Remaining Useful Life,RUL)进行预测,从而提前采取维护措施,保障运行安
人脸识别是人工智能技术研究中的热点之一,以其突出的高并发性、非触碰性等特点,在安防、监控、移动支付等工业生产领域已有广泛的应用。自AlexNet在2012ILSVRC目标识别领域取得突破性进展,各种新颖的卷积神经网络结构不断涌现。受三维人脸数据集等因素限制,三维人脸识别技术的发展相对较晚,但是随着二维人脸识别技术的发展面临如人脸表情、姿态、遮挡以及光照变化等因素的挑战,研究者逐步转向三维人脸识别的
磁共振成像(Magnetic Resonance Imaging,MRI)技术因其非侵入性、非电离的成像方式,已经广泛地应用在物理、生物、医学等领域,尤其在病灶诊断方面的前景广阔。然而,由于磁共振独特的成像机制,磁共振扫描时间过长,容易产生运动伪影,从而影响重建质量和临床诊断。因此,减少磁共振成像时间具有重要的研究意义。目前深度学习技术与日俱进,在图像重建领域表现突出,因此基于深度学习的快速磁共振
生成对抗网络(Generative Adversarial Networks,GAN)是加拿大蒙特利尔大学的Ian Goodfellow等人在2014年提出的机器学习架构。自提出以来,便受到了深度学习领域研究人员的广泛研究,该架构在图像生成领域取得了巨大的成就。尽管图像生成模型取得了巨大的进步,但其仍然存在生成图像多样性不足、生成的高分辨率图像质量差、模型优化需要大量训练数据等问题。大量的研究人员
自动导引运输车(Automated Guided Vehicle,AGV)是一种移动轮式机器人,属于智能运输设备。AGV是目前无人工厂中的重要组成部分,可以取代人工完成搬运任务。随着制造业的发展和人工成本的提高,自动化流水线也需要相应的AGV调度系统来满足日益增长的任务需求。AGV可以实现物料的高效运输,降低生产成本,因此多AGV系统正在逐步推广。基于以上背景,提出对多AGV路径规划、任务调度和任
掌握自然语言是人类区别其他生物的独特智慧特征,古往今来人们从未停止过对其的研究,近年来GPT-2以及Bert等大规模预训练模型的横空出世,给予了自然语言生成领域内的研究空前的热度。自然语言的生成是有限制的,不同的文体抑或是在不同的语境下都有其独特的约束,于是受限文本生成也成了业内的一个必然要求。深度学习方法往往需要大量的相关数据,然而数据的整理是很繁琐的,并且小的数据量根本不足以使得神经网络拟合。
阿尔茨海默症(AD)的神经影像学自动诊断近年来引起大量关注,但至今尚未有较好的技术手段准确地诊断识别出相关疾病,由于图像识别技术的发展与突破,阿尔茨海默症图像诊断技术面临以下几个问题:(1)传统医学图像诊断技术需要人为提取图像特征,再使用机器学习分类算法,具有较强主观性;(2)AD患者脑部影像具有三维空间的特征,传统二维图像识别算法无法较好提取到大脑中的病理特征。本文针对以上问题,本研究由图像特征