论文部分内容阅读
麦克风阵列已广泛应用于音/视频会议、语音识别及增强等领域。声源定位是阵列信号处理的主要任务之一,是实现空间滤波的基础。基于阵列的定位算法分为超分辨算法和非超分辨算法。非超分辨类算法的定位精度受到阵列孔径的限制,只能用于定位精度要求较低的情况。超分辨类算法定位精度可以突破瑞利限,在一定条件下可以实现任意定位精度,具有极大的应用价值。传统的超分辨算法假设信源为窄带远场平稳信号,而麦克风阵列处理主要针对宽带短时平稳的语音信号,且声源可能位于阵列的近场,这导致DOA(direction of arrival)估计算法不能通用。基于麦克风阵列的声源多维定位与传统的信源定位相比,主要存在如下问题: 1) 宽带信号:在窄带条件下,阵元之间的相位差可以近似认为是信号源位置的函数,频率为一常量;而语音信号为宽带非调制信号,阵元之间的相位差为频率和信号源位置的复合函数。 2) 近场源信号:在麦克风阵列处理中,因为应用环境不同,声源可能位于阵列的近场或远场,而传统的阵列信号处理均假设信源位于阵列的远场。 3) 空间干扰源:在室内环境中,空间干扰源和语音信号同时辐射到阵列上,严重影响定位性能。 4) 多维定位:麦克风阵列应用一般需要二维/三维定位,传统的阵列处理算法主要针对一维DOA估计。 本文围绕这些问题,提出了几种声源定位算法,实现了声源多维定位,主要工作如下: 1) 提出了基于麦克风阵列的近场信号模型:根据语音的传播特性和阵列处理的要求,提出了基于球面波前的近场信号模型,该模型综合考虑了阵元之间的幅度衰减和时延两个因素。当信源与阵列的距离较远时,阵元接收信号之间的幅度差异减小,该模型可以退化为远场信号模型。针对多维定位问题,提出了麦克风阵列的一般设计原则,并设计三种麦克风阵列:二维均匀圆环麦克风阵列、三维均匀直线麦克风阵列和三维均匀球面麦克风阵