面向多视图数据的鲁棒性判别分析算法研究

来源 :广东工业大学 | 被引量 : 0次 | 上传用户:zyfscu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
多视图数据通常可以由多个不同的特征集来进行描述,相比于单视图数据其包含了更多的判别信息,从而使得多视图特征学习技术在近年来引起了研究者广泛研究。多视图数据通常是高维数据,其不同视图之间的数据存在着互补性与冗余性,如何从多视图数据中学习合适的特征投影将高维的多视图数据映射到低维的数据空间中是降低计算复杂度与资源消耗的首要任务。其次,如何从不同的视图数据之间挖掘出有效的判别信息已成为多视图特征学习技术运用于分类的主要问题。然而在实际应用中,海量的多视图数据通常含有部分有标记的数据以及大量未标记的数据,因此如何利用好少量数据中的标记信息以及大量无标记的样本信息来完成多视图特征学习任务是非常有意义的。针对以上问题,本文创新地提出了两种多视图特征学习算法,主要的研究内容如下:一、针对如何从多视图数据的样本标记信息中学习将高维数据映射到低维空间中的特征投影问题,提出自适应权重的多视图判别投影(AMDP)方法。该算法基于希尔伯特-施密特独立性准则(Hilbert-Schmidt Independence Criteria,HSIC)有效地保持多视图数据在希尔伯特空间中存在的潜在一致性结构,同时通过对每个视图数据的空间局部流形结构进行保留,以提取原始数据中尽可能多的判别信息。更重要的是,考虑到多视图数据中存在的一定噪音以及异常点,该算法对每个视图都使用低秩稀疏表示技术,有效的提高算法的鲁棒性。此外,通过设置自适应的权重来对每个包含不同特征信息量的视图进行相应的加权,以提高算法的准确性。最后,基于LADMAP方法对所提出的算法进行有效的求解。在两个基准数据库上的实验结果表明,所提出的AMDP算法优于与其对比的判别性投影算法。二、针对如何利用多视图数据的少量标记与大量无标记样本信息进行分类问题,提出了基于一致性约束的半监督多视图分类(SMCC)方法。其算法通过结合半监督与多度量学习提高多视图特征数据的分类性能。具体而言,首先基于希尔伯特-施密特独立性准则对不同视图之间进行一致性约束,以保持多视图数据在希尔伯特空间的结构一致性。其次,通过保留欧氏空间中不同视图特征数据的局部流形结构并对相似矩阵施加Frobenius范数约束,以提高算法的鲁棒性。然后,根据每个视图数据中包含的特征信息量与噪声污染程度对不同视图自适应地赋予相应的权重,再利用谱聚类约束来对未标记的数据进行分类。最后,基于ADMM算法设计有效的求解方法,并在四个基准数据集上进行实验以验证算法的性能。
其他文献
三维重建技术在逆向工程,自动驾驶,医疗影像等多个学科行业起着重要的作用,但由于大多数三维设备每次只能重建单一视角的三维点云,为了重建整个完整场景需要点云配准使得不同视角的点云完成拼接融合。因此三维点云配准技术是三维重建中的重要组成部分,直接影响三维重建效果的好坏。其中,使用深度学习实现点云配准的DCP(Deep Closest Point,深度最近点)单次迭代即可完成点云配准工作,配准速度远超传统
无人机(Unmanned aerial vehicles,UAV)具有诸如低成本,高移动性和按需部署的特点,其装载通信设备后可通过人为控制或自适应调整飞行路线,与地面通信设备建立高概率视距通信链路(Line-of-Sight,LoS),因此被广泛应用于无线通信领域。无人机机载中继通信系统是无人机在无线通信领域一个主要应用。相较于传统的地面静态中继,无人机可以充分利用其可移动的特点,自适应且快速的调
随着国内隧道交通建设需求的不断增加,盾构机作为隧道建设的重要工程装备开始被广泛应用于各种建设场景。复杂的应用环境导致盾构机在使用过程中经常发生故障,此时需要具有丰富维护知识的工程师对盾构机实施维护,相关的维护知识大多只存在于工程师的大脑及非结构性维护资料中,盾构机维护企业迫切需要将非结构性的维护知识转化为更加数字化、结构化及规范化的维护知识。知识图谱作为一种描述数据知识间关联关系的技术方法越来越受
随着5G通信的发展,无人机作为辅助通信的设备应用在通信领域,在一些特殊的场景如遭遇暴风雨雪,地震等灾害中,一些区域基础的通信基站被破坏,无人机可以利用其低功耗,机动性强的特点,帮助通信受损地区建立通信链路,恢复通信。无人机有限的续航能力和机载能力导致通信系统的通信时间和覆盖范围不充分。如何补足无人机这个缺点并延长通信系统的通信时间是本文的研究目标。功率分配和无人机的高机动性是无人机平衡各个通信链路
嵌入式技术的快速发展催生了一系列以之为基础的嵌入式电子系统,如人脸识别、音频解码、智能诊断等。该系统的开发一般包含软件设计和硬件设计。在设计过程中,由于需要兼顾软件和硬件特性,传统系统设计无法胜任此要求,软硬件协同设计便应运而生。软硬件划分属于软硬件协同设计中的关键环节,其划分结果关系整个协同设计结果的好、坏。因此,本文以软硬件划分为研究对象,在分析已有经典划分算法优缺点的基础上,提出一种新的软硬
随着生产力规模的不断提升,近年来,智能工厂的概念在各个生产制造行业中悄然兴起。智能工厂旨在利用旨在利用各种现代化技术,对已有的基础设施进行升级改造,在生产过程、监督管理、行政办公等方面实现自动化运转,从而达到降低人工劳动成本、减少人为工作失误、规范企业管理等目标;同时,结合人工智能技术,开发并应用相应的智能分析、风险预警、辅助决策等功能,配合生产管理者完成统筹决策方面的工作。其中,对现有的视频监控
随着科学技术的发展,计算机的运算能力得到极大的提高,促进了深度学习的快速发展。因此近年来在机器视觉的目标检测领域,也取得了突破性的进展。随着目标检测技术的日益成熟,目标检测也开始应用到如:医疗、安防、自动驾驶等各个领域中。虽然目标检测在大尺寸目标和中尺寸目标的检测精度已经非常高,但对于小目标的检测精度依然非常低。究其原因是小目标的特征不明显,现有的神经网络难以提取到有效的特征进行检测。因此改善神经
5G时代的到来,标志着车联网的发展迈入了新的征程,推动车联网在自动驾驶、交通路况优化管理、丰富智能的车载系统方向的发展,人们可以尽情享受着科技进步带来的便利。不可避免的是,车联网衍生的安全问题(虚假广播、入侵攻击、隐私泄露等)已经成为国内外学者的研究热点。信任管理机制可以有效地针对节点行为做出可靠性评估,能高效、准确地识别出入侵节点,并将其携带的虚假消息从网络中剔除。为了解决传统密码学与公钥基础设
保障信息安全,在信息时代成为了人们最广泛的需求,而信息安全技术,离不开密码学。国密SM9算法是一种基于椭圆曲线的标识密码算法,由我国自主研发,在我国的商用密码体系中具有重要的意义。目前,SM9算法还面临着成本高、应用不够成熟、计算速度慢等问题。对于SM9算法的实现和研究都对SM9的进一步发展和应用有着重要意义。本文提出了一种基于SoC的软硬件协同实现的SM9签名验签系统。该系统通过硬件实现SM9算
液晶器件在人们的生活中扮演着很重要的角色,光电液晶材料如蓝相液晶、铁电液晶等,由于其优秀的外场响应能力,被不断研究应用于显示及光学器件领域。在这些材料中,有一类含偶氮苯翼的弯曲向列相液晶材料,这种材料在工业制造摩擦取向的液晶盒中显示出了优秀的光电响应特性,但是分子排列显示出的织构较差,且不方便于光场调控,难以实现应用。本文使用这种材料,基于液晶空间光调制器的偏振光控取向技术,制备了一种相位液晶器件