论文部分内容阅读
稀土掺杂的各种光学材料已经成为研究热点,而且以稀土离子为发光中心的上转换荧光技术也具有极大的应用价值和发展前景,这就促使人们在研究传统光学材料的基础上,进一步探索具有更高效发光效果的新型材料。本研究在传统金属元素掺杂铌酸锂(LiNbO3)晶体的同时,掺入不同的稀土离子作为研究对象,并对不同元素、不同浓度的掺杂情况进行了系统的分析及比较,揭示了金属元素与稀土元素掺杂LiNbO3晶体后缺陷结构及光学特性的变化规律,为今后深入研究提供了丰富的理论依据,同时也为制备新型的激光晶体提供了实验指导。本论文采用Ho和Nd两种稀土离子、以及Mg、Yb、In金属离子对LiNbO3晶体进行掺杂改性,以X射线衍射、红外吸收光谱以及紫外吸收光谱测试为手段研究各晶体的内部缺陷结构;通过上转换发光、功率曲线、J-O理论计算分析出各种晶体的上转换发光机制,同时对各试样的抗光损伤能力进行测试计算。在LiNbO3晶体中掺入不同浓度的Ho3+/Nd3+离子,通过测试分析发现,Ho3+/Nd3+离子都首先占据LiNbO3晶体缺陷结构中反位铌的位置,而随着掺入浓度达到或超过一定阈值后就会逐渐取代正常的铌位和锂位。上转换发光的强度开始会随着Ho3+/Nd3+离子浓度的增加而增强,达到一定阈值浓度后则会随浓度增加而减弱。将Ho/Nd:LiNbO3中掺入不同浓度的、可增强晶体抗光损伤能力的金属离子Mg2+,通过测试分析得出:当掺入的Mg2+离子浓度低于其阈值浓度(5mol%)时,Ho3+/Nd3+通过优先占据锂位、小部分占据铌位而形成孤位缺陷中心与团位束缺陷中心;而当Mg2+离子浓度达到或超过其阈值浓度后,Ho3+/Nd3+团位束缺陷中心会迅速解离甚至消失。受团位束缺陷浓度的影响,双掺晶体的上转换发光强度也随Mg2+浓度的增加而呈现先增强、达到阈值后减弱的现象,抗光损伤性能则较未掺杂Mg2+之前提高了约两个数量级。稀土离子Yb3+并不参与发光过程,而是优良的敏化剂。将不同浓度的Yb3+掺入Ho/Nd:LiNbO3并通过测试分析后发现:Yb3+与Ho3+/Nd3+同时优先占据反位铌位置,共同作用下促进了团位束缺陷中心的形成,上转换发光强度也会随着Yb3+浓度的增加而不断增强。选择了阈值浓度比Mg2+更低的不同浓度的In3+与固定浓度的Yb3+共同掺入Ho/Nd:LiNbO3中,分析了晶体的内部缺陷结构。当In3+达到阈值浓度前,浓度的增加可以促进晶体中团位束缺陷中心的形成;但当In3+的浓度达到或超过阈值后,可以解离团位束缺陷结构。研究三掺铌酸锂晶体功率曲线结果发现两种稀土离子(Ho3+/Nd3+)的上转换发光均属于双光子过程,且绿光强,红光较弱。晶体的抗光损伤能力较未掺In3+时有显著增强,并随着In3+浓度的增加而不断增强,但上转换发光强度则较未掺杂In3+时有所减弱。