论文部分内容阅读
以镁合金为代表的轻量化材料具有优良的综合力学性能,可以满足航空航天、轨道交通和汽车等工业轻量化需要的基本条件。但其在常规轧制过程中极易形成边裂,边裂已经成为限制镁合金板材广泛范围应用的一个重要影响因素,裂纹的产生会降低镁板轧制产品的成材率。本文中分别以不同压下量对初始厚度为7 mm的AZ31镁合金板材进行了轧制过程数值模拟以及实验研究,其中轧制温度为450℃。研究结果表明,当单道次压下量达到20%时,板材边部将有裂纹萌生,并且边部裂纹深度随着压下量的增大而不断增大,由20%时5240μm的边部裂纹深度增加到压下量45%的14056μm;建立了边部裂纹深度预判模型;对于裂纹深度,轧制实验实测值和所建立的裂纹深度预判模型的计算值之间的平均误差为9.23%。同时针对不同初始厚度的板坯,对立辊侧压预变形轧制过程进行有限元模拟分析,并建立了板厚10 mm,15 mm,20 mm在不同侧压量条件下的边部凸起轮廓数学模型。数值模拟结果表明立辊侧压预变形后再进行平辊轧制可以减小镁板轧制过程中的最大损伤因子。对镁合金板坯采用立辊侧压预变形轧制工艺可实现大压下轧制;随着立辊侧压量的增大,大压下平轧后的最大损伤值反而减小,但侧压量小于板坯初始厚度为宜。根据实际条件,采用边部预制凸度轧制方法对铸态AZ31镁合金板材轧制边裂的控制效应进行实验研究。根据初始厚度为10 mm的板坯在立辊侧压量分别为2 mm,3 mm,4 mm下所得到的凸起轮廓数学模型,对试样进行边部预制凸度轧制实验。实验结果表明边部预制凸度轧制工艺可有效控制铸态AZ31镁合金板坯轧制过程中的边裂;边部预制凸度试样轧制边裂的产生与轧件边部和中部压下率之差有关;在轧制温度450℃、轧制速度0.2 m/s的条件下,压下量之差的最佳取值为15.2%;当预制凸度后第一道次的压下量为10%时,预制凸度量为4.1 mm的试样经过5道次累计压下率达到77%轧制后也无边裂产生。