【摘 要】
:
外场中的原子分子系统是当前物理学中最为活跃的研究对象之一。从本世纪初,关于荷电粒子在外场中的行为已引起人们的重视;五十年代离子阱技术的发明使实验研究达到了新的水平:Paul阱、Penning阱等离子阱的问世,为人们进一步研究在外场中的原子分子系统的基本性质,提供了十分重要的实验依据;近十几年来的进步,特别是激光冷却技术的发展及其在离子阱中的应用,为制造新材料、观察新现象,获得新知识,提供了广泛的实
【机 构】
:
中国科学院研究生院(武汉物理与数学研究所)
【出 处】
:
中国科学院大学(中国科学院精密测量科学与技术创新研究院)
论文部分内容阅读
外场中的原子分子系统是当前物理学中最为活跃的研究对象之一。从本世纪初,关于荷电粒子在外场中的行为已引起人们的重视;五十年代离子阱技术的发明使实验研究达到了新的水平:Paul阱、Penning阱等离子阱的问世,为人们进一步研究在外场中的原子分子系统的基本性质,提供了十分重要的实验依据;近十几年来的进步,特别是激光冷却技术的发展及其在离子阱中的应用,为制造新材料、观察新现象,获得新知识,提供了广泛的实验基础,也导致了象量子信息、量子计算等一些新的理论研究领域的出现;另一方面,随着强激光实验技术的发展,在外场中的库仑体系的解离、电离等过程成为强场物理、化学物理中十分重要的研究课题。最近人们对氢分子离子的光解离过程进行了实验方面的研究,显示出解离过程中的奇异性质。但在理论上求解量子力学方程时,却存在一定的困难,而从经典力学角度,特别是从混沌的角度进行研究仍鲜见报道。开展这方面的研究,将从另一方面深化人们对囚禁或束缚体系形成的逆过程的了解。 一般来说,外场中的少体库仑体系可分为两种情况:一是异荷(hetero-charged)带电粒子的体系(或异类体系,指不同质量、不同电荷的粒子),以氢原子、氦原子、氢分子离子、氢分子等系统为代表。这类体系既可由其内部的库仑相互作用而形成束缚态,也可在一定的外部作用(比如强激光脉冲作用)下发生解离(光解高、电离、解离-电离等),本文将讨论这类体系的束缚态形成过程和解体的动力学(特别是非线性)行为;另一种情况是同荷带电粒子体系(homo-charged,其质量、电荷符号数量都相同的全同粒子体系),由于库仑相互作用,必须在外加场的作用下才可能形成稳定的束缚状态,以Paul阱中的少数几个囚禁离子为代表。本文研究在某些特定条件下2、3个囚禁离子的经典、半经典和量子的动力学行为。 本文分为两大部分,其主要内容包括: 第一部分为超强激光场中的氢分子离子光解离、电离等问题。首先,我们研究了无外场时的氢分子离子的量子力学和经典动力学行为。在量子力学方面,求解了Born-Oppenheimer Approximation(BOA)近似下的一维、二维量子力学薛定
其他文献
少体原子体系的精密光谱测量在检验基本物理定律和确定基本物理常数等方面具有重要意义。锂离子作为最简单的类氦体系,其外层仅有2个电子,能级结构可以通过量子电动力学(QED)理论进行高精度计算。在QED理论中,电磁相互作用由精细结构常数α表征。因此,锂离子的精细结构的高精度计算结合实验测量的精细结构和超精细结构劈裂可以检验QED理论,并精确确定α常数。目前,锂离子精细结构劈裂的实验结果的精度与理论计算相
紧密排列的微型光学偶极阱阵列中的中性原子体现出了极好的扩展性,因此在量子模拟和量子计算中有广阔的应用前景。最近,研究者已经证实了无缺陷的原子阵列,可以确定地将50个量子比特存储在一维、两维空间,或者将更多的量子比特存储在相对紧凑的三维空间中。51个原子的量子模拟器也已经被演示。当中性原子量子比特的数量扩展以后,不完全隔离的逻辑操作和单个量子比特的初始化和状态读出,会导致串扰问题。将相同种类的量子比
光是比较好的信息载体,所以研究光信息在介质中的传输和存储显得尤为重要。而电磁诱导透明(Electromagnetically Induced Transparency,简称EIT)技术是操控光与原子相互作用比较好的方法。当两束激光与原子两基态子能级跃迁的频率满足双光子共振时,就会发生EIT效应。在EIT现象中,原子被囚禁在一个不与较高能级的激发态相互作用的相干暗态上,这一特性就可以使原子几乎透明的
中性单原子量子比特在偶极阱中的量子操控以及两原子的碰撞等在量子信息领域和少体物理动力学研究方面有十分重要的意义。本文详细研究了偶极阱中单原子量子比特的相干性,实现了单原子的魔幻囚禁和相干性无损的转移;详细研究了异核两原子基态碰撞和光辅助碰撞,测量了一定条件下的碰撞损失的速率常数。本文的主要内容和创新点如下:1.实现了魔幻偶极阱,获得超长的相干时间和相干性无损的转移根据A. Derevianko在2
基于原子、分子体系的基本物理理论的低能检验与基本物理常数的高精度确定一直是精密测量物理中的重要研究内容。其中,氢原子、氦原子、类氦离子和氢分子离子等少体原子分子体系的跃迁光谱的精密测量与精密计算具有重要的研究价值和意义。一方面高精度实验测量和理论计算的结合可以检验量子电动力学(QED)理论的正确性与适用范围,另一方面,在假设理论正确的前提下,高精度实验测量值和理论计算的对比可以高精度的确定一些基本
本文主要研究了一维空间中两类流体模型,一维气体动力学模型和一类改进的交通流模型。我们在前两章叙述了问题背景,研究的问题以及主要结果,并介绍了一维守恒律方程组的基础知识。在第三章中,我们着眼于相同初值下一维等熵与非等熵气体动力学方程组黎曼问题的解的对比。我们证明了当黎曼初值相同时,若等熵气体动力学方程组的黎曼解中出现了前向(反射)激波,那么非等熵情形下也会出现该族激波;若非等熵气体动力学方程组的黎曼
氢分子离子(H2+,HD+等)是由两个核和电子构成的最简单的双中心分子体系。反质子氦pHe+是一种奇异的三体库仑体系,相当于一个反质子取代氦原子的一个电子,并处在高角动量里德堡态。氢分子离子和反质子氦理论上都可以进行精确的计算,并且实验上目前也可以进行高精度的光谱测量。对特定的跃迁频率进行理论计算和实验测量的比对,不仅可以检验束缚态QED理论甚至CPT对称性理论还可以高精度地确定(反)质子-电子质
本文将B样条有限基矢方法推广到双电子原子体系的电子关联计算,并用这一方法计算了零场下氦原子等二电子序列的基态能,所得结果优于用Slater基所得的结果。从而表明了B样条方法在电子关联计算方面的广泛应用前景。运用B样条方法,我们发展了一套适合处理中等强度磁场下的双电子原子体系的新方法,在这一方法中,所有的矩阵元计算都只包括解析积分和一维数值积分,使得计算变得简单,所得到的结果比普遍的球坐标和柱坐标中
瞬态分子是化学、物理及生物过程中的中间产物,具有很短的寿命,是我们从更深一个层次研究物质分子结构、化学反应动力学的关键,因而长期以来一直受到人们的重视。瞬态分子包括自由基、分子离子、分子激发态及其它一些短寿命的中性分子。本论文所述的博士学位研究课题就是建立高灵敏、高分辨的光谱技术,选择探测各类瞬态分子。三年来,作者在导师的指导下建立了新型差分式速度调制和浓度调制激光光谱技术,并利用N2+的光谱检验
本文我们主要研究了一维情况下两类含双曲退化的非线性守恒律方程组的Riemann问题。前两章我们首先陈述了所研究问题的背景和结果,介绍了一维守恒律方程组的一些基本概念和理论。在第三章中,我们研究了非线性退化波方程的Riemann问题。利用Liu-熵条件,我们细致地分析了该方程基本波的性质,完整地构造了Riemann问题的全局解。对其Cauchy问题我们构造了近似解序列,并验证了近似解的一致界估计和强