论文部分内容阅读
“赤橙黄绿青蓝紫,谁持彩练当空舞?”,可见波段激光在关系国民经济和国家安全的众多领域有重要的需求并已获得广泛应用。目前,红光(赤)和蓝光(蓝)波段,半导体激光和全固态激光倍频所获得的激光均已发展成熟;绿光(绿、青)波段,半导体激光已经逐步发展成熟并已在中小功率激光方面垄断商品市场,全固态激光倍频已经获得实用;紫光(紫)主要以全固态激光的三倍频获得,已经实现十瓦级激光输出。但处于人眼敏感的黄光(橙黄)激光,依然有待发展,属于激光领域的研究热点和难点之一。目前主要有三种方法可以实现黄光激光的输出,包括:1、利用蓝光半导体激光器泵浦特殊激活离子(Dy3+、Pr3+)掺杂的低声子能量晶体(主要是氟化物)的激光辐射获得,但是受限于当前蓝光泵浦源的输出功率和对晶体低声子能量的要求,目前输出功率较低、尚处于实验室研究阶段;2、Nd3+或者Yb3+离子1 μm附近激光的受激拉曼散射后再进行倍频获得,存在三阶非线性和二阶非线性两种光学效应,频率转换过程复杂,激光器设计复杂,激光阈值较高,效率较低;3、Nd3+离子1.06 μm和1.3 μm的激光发射后再和频获得,设计复杂,调整困难,结构稳定性差。黄光激光的发展亟需新原理的引入和新器件的发明。功能复合晶体是同时具有两种或多种功能并可以实现复合的晶体材料,其中激光自倍频晶体是应用最为广泛的一类,该晶体同时兼具激光和倍频两种光学性质,可在一块晶体中完成激光和倍频过程,实现倍频激光输出,所制作的激光器件具有结构简单、紧凑、体积小、调整方便、稳定性好等优点,可满足现代信息社会对高集成光电器件的需求。山东大学长期坚持激光自倍频晶体研究,发现硼酸钙氧稀土盐系列(RECOB)晶体具有较宽的透过光谱、较为稳定的物理化学性质、可用提拉法生长大尺寸高质量的单晶等优势,是综合性能较为优秀的激光自倍频基质材料。本论文在本课题组前期研究的基础上,针对黄光激光研究现状,提出通过电子-声子耦合来实现激光波段的拓展,以达到黄光激光输出的效果。从Huang-Rhys因子出发,深入研究了晶体结构-掺杂离子-激光效果间关系,发现由于镧系收缩Yb3+离子会有较强的电子-声子耦合强度,并根据休谟-饶赛定则,选定掺镱硼酸钙氧钇晶体(Yb:YCOB)为研究对象,开展了晶体生长及黄光激光自倍频器件设计的系列研究工作。其中,涉及了晶体材料的选取、晶体生长、基本性能表征、黄光自倍频晶体浓度和长度优化、黄光自倍频器件设计等,实现了瓦级黄光自倍频激光的输出。主要工作如下:1.Yb:YCOB晶体的生长以及基本性质表征Yb:YCOB晶体是同成分近一致熔融化合物,可用提拉法生长晶体。面向黄光激光自倍频应用,生长了掺杂浓度从5%到30%的系列晶体,突破了晶体生长过程中的开裂、气泡、组分偏析等关键难题,获得了尺寸为Φ25mm×40 mm、重量约为130g的晶体;测试分析了晶体的结构和组分,证明所生长的晶体具有很好的均一性和高质量;以晶体物理基本原则为指导,加工了可实现单斜Yb:YCOB晶体热学性能测试的晶体样品,测试了不同掺杂浓度晶体的热膨胀、热扩散、比热和密度,计算了晶体的热导率,揭示了掺杂浓度对热学性质的影响规律,发现该类晶体的热膨胀和热导率具有较小的各向异性且掺杂浓度对其影响较小,说明Yb:YCOB晶体在生长和加工的过程中不易开裂,且高掺杂浓度不会明显降低其热学性质,可实现高功率及高效率自倍频激光输出。2.Yb:YCOB晶体光学性质及其电子-声子耦合研究相位匹配条件是实现非线性频率变换的基本要求,依赖于非线性光学晶体的双折射和折射率色散规律。对于单斜晶系的Yb:YCOB晶体来说,结晶学轴与折射率主轴不完全重合,且折射率椭分布可用三轴不等的椭球体描述。利用最小偏向角法测试了不同掺杂浓度、不同切割方向晶体的折射率,拟合得到了色散方程,并通过主轴化得到折射率主轴在结晶学坐标系中的方向,发现掺杂浓度对色散方程的影响较小,且随着掺杂浓度的升高,结晶学轴与折射率主轴之间的夹角略有上升;表征了不同掺杂浓度晶体的偏振吸收和发射光谱,结果显示该晶体的零声子线波长是975 nm,吸收和发射性能呈现较小的各向异性,由于电子-声子耦合作用,零声子线两边的吸收和发射强度随掺杂浓度明显增强;分析了单斜晶体介电常数张量中对角化的实部(折射率)和非对角化的虚部(吸收或者发射)的角度空间分布,并计算了吸收和发射角度空间分布随晶体浓度和波长的色散关系,发现较高掺杂浓度的晶体具有较大的空间角度。由于镧系收缩,Yb3+离子具有较小的半径,4f壳层电子所受的5s和5p壳层电子的屏蔽作用较弱,容易受到基质晶格的影响,即通过电子-声子发生相互耦合作用可实现光谱展宽,获得激光后以之倍频可能实现黄光激光输出。分析计算了影响电子-声子耦合作用强度的配位体价键的离子性和Huang-Rhys因子S,结果显示硼酸盐体系晶体中B-O键的离子性较大,具有较强的电子-声子耦合强度,S因子随着温度以及掺杂浓度的升高而变大;研究了发射谱线强度与参与声子数的关系,发现当声子数目等于S因子时发射谱线具有最强的发射强度,且参与声子数目小于S因子时的发射强度高于声子数目大于S因子的发射强度。光学性质的测试表明Yb:YCOB晶体具有较强的电子-声子耦合作用,辅以激光-倍频功能复合性质可实现黄光自倍频激光。3.Yb:YCOB晶体黄光自倍频激光性能研究研究了 Yb:YCOB晶体的自倍频激光性能,通过谐振腔设计初步获得了输出功率710 mW、输出波长523 nm的绿光自倍频激光输出,其光-光转换效率为8.59%。通过分析该类晶体的光谱特性,发现1000 nm-1060 nm波长范围的基频光具有较大增益,需通过合适的镀膜工艺或选频技术加以抑制,以实现增益较小的1100 nm以上的基频光振荡并获得黄光激光输出;以计算的最佳相位匹配方向晶体的增益截面为指导,利用不同掺杂浓度晶体的色散方程计算了晶体在基频光1140nm处的最佳相位匹配方向,为黄光自倍频激光的实现提供了理论支持;加工了可实现相位匹配的黄光自倍频晶体并实现微片结构设计,获得了黄光激光输出,测量并分析了晶体长度、掺杂浓度、晶体最佳相位匹配方向对自倍频激光输出功率和效率的影响规律,发现掺杂浓度较低的晶体(5 at.%)在晶体在长度较长(8mm)时可获得了较高的黄光输出功率(1.868W)和转换效率(11.76%)、掺杂浓度为30at.%、长度为4mm的晶体获得了 1.713 W的输出功率(转换效率为11.97%);优化掺杂浓度和晶体长度,在掺杂浓度为20at.%、晶体长度为6mm的Yb:YCOB晶体中获得了输出功率2.752 W的黄光激光输出,转换效率是16.59%;通过设计镀膜条件获得了稳定波长(570nm)的黄光自倍频激光的输出。目前,黄光自倍频晶体和激光器件已经在青岛镭视光电科技有限公司实现产业化,用于生产具有我国自主知识产权的黄橙光激光器件和激光光源。