基于多粒度特征融合与局部信息增强的行人重识别方法研究

来源 :湘潭大学 | 被引量 : 0次 | 上传用户:hh0745cn12
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
行人重识别是在跨监控设备下对给定行人图像进行目标检索的技术,是近期计算机视觉领域的一个关键问题,普遍应用于智能安防、人机交互、电子商务等领域。由于监控下的行人图像存在视角差异、姿势变化、物体遮挡等问题,这要求行人重识别模型能够捕捉到有效的内容来进行行人的判别。利用卷积神经网络能够提取有效的行人图像特性,但图像全局显著信息只关注到图像的整体情况,易受外界复杂环境等无关因素的干扰,如何通过局部信息增强来使网络模型重点关注到更有利于身份判别的细节是行人重识别任务中需要重点解决的难题。基于此,本文主要进行了以下改进与创新:(1)本文提出了一种阶梯型特征提取与分支注意力相结合的多粒度特征融合网络来提升行人重识别任务性能。近年来,许多研究者使用水平均匀分块的方式来进行局部特征提取,但此方法会忽略块与块之间的一些重要信息而不能充分发挥局部特征的优势。以阶梯型对特征图进行分块能够加强块与块之间的联系,同时避免边缘信息丢失,从而实现一定程度上的局部信息强化。此外,使用分支注意力给每个分支分配不同的权重能够提高网络模型对更重要分支的关注程度。在网络结构的设计上,使用多分支网络将全局特征和局部特征进行结合,实现多粒度特征的协调统一。将该方法在公开的数据集上进行实验,获得了较高的精度和准确性,证明所提出的方法能够得到更具判别性的特征。(2)本文提出了一种融合多类注意力的多尺度自适应局部注意力方法来进一步获取行人重识别图像中的局部显著信息。注意力机制是一种能够增强网络模型对图像关键信息关注程度的有效方法。以往行人重识别任务中的注意力机制方法旨在对行人整体特征进行加权强化,而所提出的多尺度自适应注意力模块对局部特征进行处理,通过自适应调整感受野尺寸来适应不同尺度图像,同时融合了通道注意力和空间注意力筛选出图像重要特征并将其用于最终识别。最后,经过与多种主流方法的比较,本文设计的网络模型有效地提高了行人重识别任务的准确率,证明了该方法的优越性能。综上所述,本文方法主要是对行人图像的局部特征进行研究,寻求合适的方法来实现局部图像信息增强,并以多粒度的形式将其作为全局特征的重要补充。最后,在三个公开的行人重识别数据集上通过实验验证了本文方法的优异效果。
其他文献
近年来,随着深度学习领域的高速发展,计算机视觉领域衍生出了许多新兴领域,其中语义分割也是众多新兴领域之一。本文从解决语义分割在实际应用中的问题分别从解决分割的精确度与分割的时效性两个角度出发进行了模型的分析与改进。从分割精度的角度出发通过引进注意力机制来对重要特征进行针对性的特征提取来提高模型的准确率。从时效性的角度出发通过多尺寸特征图分级提取特征来降低网络提取特征所需要的时间。首先本文对近年来语
重复控制的本质是内模控制,其时滞环节可以通过状态空间描述和提升技巧融合到增广系统中,能够有效解决周期性外激励信号控制问题,意味着可以准确跟踪或抑制周期性信号。预见控制可以在不改变闭环系统动态结构的情况下,利用期望目标的未来信息减少因外在干扰造成的系统扰动,继而系统的跟踪稳定性得以提升。对于高性能的伺服系统来说,不能忽略时滞的存在。本文在预见控制和重复控制已存在较多研究成果的基础上,针对几类不确定线
在陌生场景下,机器人的首要任务就是获取位置及其周边信息,其中的关键技术就是同时定位与建图(Simultaneous Localization and Mapping,SLAM),由于其在机器人领域上的应用前景,视觉SLAM的相关研究引起了广泛的关注。本论文在经典视觉SLAM框架的基础上,对视觉里程计和闭环检测两个模块进行研究。在视觉里程计模块,针对传统方法存在的鲁棒性差和尺度漂移问题,提出了基于深
在计算机视觉领域,图像分割作为非常关键的部分,是该领域基础问题之一。在实际应用过程中具有极大的价值。本文的研究基于图像分割中两个重要子领域:图像语义分割和显著性目标检测。图像语义分割是从像素层面对图像中的目标进行分类,基本要求是每一个像素都应被正确地分类。显著目标检测来源于视觉显著性,主要任务是寻找一张图像中人眼最关注的目标区域。但是显著目标检测只是得到显著这一种类型的目标,可以看成一个二分类问题
为充分提高分布式能源的利用率、降低化石能源的消耗及其对环境的污染,在电力系统领域中微电网技术得到了飞速的发展。微电网能统筹利用本地各种形式的可再生能源,维系局部区域与大电网之间的电力平衡。随着微电网及主动配电网技术的成熟,其工程应用已变得非常广泛。与此同时,微电网数量的急剧增加也带来了新的问题,例如,在能量交易方面,基于对微电网交易的成本、合理性、公平性与能源就地消纳的考虑,传统的单一微电网与配电
在人工智能+交通的发展背景下,交通实验设备更加智能化,而现有的实验模型设备只能对车辆进行监控,并不具备车牌识别能力,这给交通工程学生在相关领域的研究和实验带来局限。因此,为了满足交通实验教学需求,本文提出在缩微交通环境下构建缩微智能交通平台来进行车牌识别,实验结果表明:该实验平台能对模型小车车牌精准识别,具有较高的工程应用价值。论文主要内容如下:首先,对缩微交通环境下进行车牌识别研究的背景和意义进
当前分布式能源对电网持续地渗透已经不断在为能源互联网的进一步发展完善前置条件。为了让分布式发电能够逐渐全面参与电力交易,国家已对分布式能源交易试点提供了最新政策指导。目前的能源交易已经开始尝试结合区域电网、分布式发电、新兴技术等,但仍然存在诸多不足之处:如未考虑“过网费向负荷侧收取”的政策要求对交易市场中购售双方带来的利益平衡问题;着重于交易模式、策略却忽视交易与安全调度的匹配;缺少对传统交易中心
针对6槽7极单边平板型永磁同步直线电机运行过程中会产生推力波动,导致机床加工精度变差的问题,本文以数控机床使用的永磁同步直线电机(PMLSM)为研究对象,对电机的设计方案与减小电机端部磁阻力等方面进行研究。提出一种将V型磁极与错位法相结合的方法;并且针对辅助齿宽度的大小与位置跟推力波动的关联,提出一种单级凸阶梯型辅助齿结构。(1)运用基本参数建立永磁同步直线电机模型。基于旋转电机的设计公式与流程;
近50年以来,科技发展迅速,人民生活已进入工业4.0时代。为了满足对电能的需求,电力电子技术的未来研究方向将朝着更高频化、模块化、集成化的方向发展。一方面,谐振变换器因为具有软开关特性,能够良好的抗开关短路与断路功能,在高频化、高功率密度的开关电源中具有重大作用,其中,LCC谐振变换器重点应用在恒流源与恒流驱动、无线直流充电等领域中。另一方面,开关电源中由于其分立的无源元件过多,势必会占用大量空间
随着信息化时代高速发展,人们对图像质量的要求日益增加。图像超分辨率(Super-Resolution,SR)重建旨在通过计算机软件方式从低分辨率图像中恢复自然、清晰的纹理,重建出画质优良的高分辨率图像。近年来,得益于深度学习技术的应用,图像SR重建取得显著进展,在消费与医疗、公共安全与军事等相关专业领域都有着广泛的应用。针对目前图像SR重建算法训练速度缓慢、网络模型不稳定以及对高频信息处理模糊等问