复合加载模式下地基极限承载力与安定性的理论研究及其数值分析

来源 :大连理工大学 | 被引量 : 22次 | 上传用户:mirror722
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
现有的土木、水利、港口与海岸工程中,地基土体除了承受竖向自重荷载的长期作用,而且还受到狂风、暴雨、波浪等瞬时或循环作用。这些荷载效应通过结构物的基础传到地基上,从而使得地基受到竖向荷载(V)、水平荷载(H)和力矩荷载(M)3个分量的共同作用,这种加载方式定义为复合加载模式。荷载分量的大小、方向和作用点往往随时间发生变化,这种加载模式称为变值复合加载模式。本文针对复合加载模式下地基所能达到的极限状态和变值复合加载模式下所呈现出来的安定特性,分别从理论分析与数值计算出发,采用了极限平衡定理、极限分析原理和有限元数值计算的方法,详细地分析与研究了地基的破坏模式及其极限承载能力。主要研究工作如下:1.在土体极限平衡定理的基础上,将变分法推广到三维地基极限承载力的求解中,最终在变分法的基础上求得了复合加载模式下地基的极限承载力、地基破坏包络面与破坏土体滑裂面方程。并从理论上详细研究了土体内摩擦角φi、土体黏聚力ci沿深度的变化关系、土层间强度比ci/ci+1、土层厚度Hi、地下水位变化以及矩形基础长宽比L/B等因素对破坏包络面的影响。2.在土体极限分析原理的基础上,基于Mohr破坏圆理论与刚塑性土体假设,本文给出了静力许可可变应力场与运动许可可变速度场的构造方法,从而求得了二维条形基础和三维矩形基础复合加载模式下破坏包络面的下限解和上限解。计算结果表明,土体内摩擦角φ极大地影响着上限定理和下限定理的求解结果。对于不排水饱和软黏土地基φ=0°而言,上限定理与下限定理的求解结果基本一致,在忽略计算误差的情况下,上限解与下限解同问题的真解一致;对于摩擦角φ不为零的黏性土地基而言,由静力许可可变应力场求得的下限解和由运动许可可变速度场求得的上限解存在一定程度的差别,在上限解与下限解之间一定存在问题的真实解答。3.为了进一步详细研究不同因素对地基破坏包络面的影响,以及研究复合加载模式下地基的破坏形式,本文采用了通用有限元软件ABAQUS对其进行了数值分析,并对地基的破坏模式进行了研究。研究结果表明:1)基础上竖向荷载V的大小决定了地基破坏时会发生表层滑动破坏、浅层滑动破坏或深层滑动破坏;2)基础上的水平荷载H造成了地基破坏模式的非对称性;3)基础上的力矩荷载M改变了基础的有效宽度,从而造成了基础底部弹性核的变化,最终使得M-H-V荷载空间中出现了不同的地基破坏模式。概括而言:V-H荷载空间中地基会出现表层滑动破坏模式和深层滑动破坏模式;V-M荷载空间中地基会出现勺形倾覆破坏模式和深层滑动破坏模式;M-H-V荷载空间中地基破坏模式比较复杂,根据基础上水平荷载H和力矩荷载M作用方向的不同,首先可以将破坏模式划分为前倾勺形模式和后仰勺形模式,然后再依据基础下弹性核的出现与否为界限,进一步将破坏模式划分为表层滑动破坏模式、前倾勺形破坏模式、后仰勺形破坏模式、勺形—双楔形破坏模式、楔形破坏模式、勺形—扇形—楔形破坏模式、Green破坏模式、Hansen破坏模式和扇形—楔形破坏模式等形式。4.在ABAQUS有限元分析软件的基础上,本文研究了服从非关联流动法则摩擦性土体的弹塑性矩阵对有限元数值算法的影响,并研究了弹性模量、泊松比以及地基土压、力系数对数值计算结果的影响,同时探讨了数值分析过程中常规位移元与杂交元在岩土工程中的应用。研究结果表明,土体弹性模量和泊松比对二维基础极限承载力没有影响,但是影响着三维矩形基础的极限承载力,控制着ABAQUS数值算法的计算精度与收敛速度;地基土压力系数控制着地基土体中的地应力平衡,从而影响着二维条形基础和三维矩形基础的极限承载力和地基破坏包络面;对于不排水饱和软黏土地基,常规的完全积分单元会造成剪力自锁现象,而减缩积分单元则存在过于柔化的现象,故采用杂交单元来模拟较合适;当土体服从非关联流动法则时,屈服函数(加载函数)与塑性势函数之间存在差异,从而导致土体弹塑性矩阵呈现非对称性,在有限元计算中必须采用非对称数值解法,并且合理地划分单元才能对极限承载力进行准确求解。5.复合加载模式下,通过对三维矩形基础和二维条形基础进行数值分析,结果表明:黏性土地基中地下水位的变化,对三维矩形基础极限承载力的影响程度高于对二维条形基础的影响;在求解地基极限承载力的过程中,土体重度对三维矩形基础的影响明显高于对二维条形基础的影响,同时ABAQUS数值计算过程表明,地基土体地应力能否合理平衡,对数值求解过程中是否收敛有很大的影响;就土体剪胀角对地基极限承载力的影响程度而言,二维平面应变情况下土体剪胀角对极限承载力的影响比三维情况下的影响更明显,即土体剪胀角对条形基础极限承载力的影响高于三维矩形基础。6.复合加载模式下,对于M-H-V荷载空间中的破坏包络面而言,三维矩形基础由于“端部效应”的影响,当基础上所受到的竖向荷载V小于临界荷载时,随着竖向荷载V的逐渐增大,地基破坏包络面非对称形式的改变速度高于二维条形基础的改变速度,表明矩形基础的“端部效应”削弱了地基土体的前倾勺形破坏模式和后仰勺形破坏模式;当基础上所受到的竖向荷载V大于临界荷载时,对于H-M荷载平面内破坏包络曲线的对称性而言,三维矩形基础情况明显优于二维条形基础情况。7.在Melan下限安定定理的基础上,通过采用ABAQUS有限元法来构造地基中的残余应力场,对变值复合加载模式下地基的安定性进行了数值分析,结果表明,变值加载条件下的安定荷载明显低于简单加载条件下的极限荷载。地基的安定性受到变值加载模式的影响较大,对称反向变值加载模式比正向变值加载模式更能降低地基的安定性。土体内摩擦角极大地影响着地基的安定性:对于不排水饱和软黏土地基φ=0°而言,正向变化的竖向安定荷载同静力情况下的极限荷载一致,水平安定荷载H和力矩安定荷载M同极限荷载相比变化较大;对于黏性土地基φ≠0°而言,正向变化的竖向安定荷载V同极限荷载相比变化较大,即土体摩擦角明显地降低了基础上竖向安定荷载,地基上的水平安定荷载日和力矩安定荷载M也有较明显的降低。通过对三维矩形基础进行安定性分析,可知在同样的变值荷载作用情况下,三维矩形基础的安定性高于二维条形基础的安定性,即三维矩形基础的“端部效应”更有利于地基的安定性。同时计算结果表明,当基础上的安定竖向荷载V较大时,在M-H-V荷载空间中安定荷载作用情况下的地基破坏模式同极限荷载作用情况下的地基破坏模式不一致。
其他文献
ue*M#’#dkB4##8#”专利申请号:00109“7公开号:1278062申请日:00.06.23公开日:00.12.27申请人地址:(100084川C京市海淀区清华园申请人:清华大学发明人:隋森芳文摘:本发明属于生物技
目的:系统评价复方甘草酸苷与阿维A胶囊联合治疗银屑病的效果和安全性。方法:选取2014年8月-2015年8月在笔者所在医院诊治的80例银屑病患者作本次观察对象,根据患者及其家属的
运用数学知识解决物理问题的能力是高考考查的主要能力之一。近似处理在许多实际问题中有着广泛的应用,熟练掌握几种常用的近似关系对有效解决相关物理问题有积极的作用,同样
新中国成立以后,尤其是改革开放以来,在几代历史教育工作者的共同努力下,我国的历史教育取得了迅猛发展。但令人遗憾的是,当前中学历史课程教育严重缺失人文气息,这是绝大多
随着社会的发展和经济的突飞猛进,安全问题越来越成为人们关注的焦点。而作为人类生活、工作主要场所的工业与民用建筑,其可靠性分析和健康诊断工作也正成为中外学者们研究的
桩纵向振动理论是动力机器基础设计、桩基抗震设计、基桩动力检测等工作的理论基础。迄今为止,这一理论已经历了近四十年的研究发展,取得了较为丰富的成果,但与工程应用的要求相
随着工业和城市建设的发展,城市地面空间愈加紧张,地下空间作为一种尚未充分利用的资源,已开始受到重视并加以开发利用,地下车库、地下商场、地下铁道等各种地下设施日益增多
目的:探讨上皮性卵巢癌(EOC)组织中趋化因子受体4(CXCR4)、肿瘤干细胞分子标记物(CD133、CD44)的表达与临床病理之间的关系。方法:选择88例EOC患者卵巢肿瘤组织标本作为EOC组
本文介绍了芝加哥商品交易所推出的天气期货,为我国建立完善的天气期货市场提供参考。在此基础上,按天气期货的不同交易目的,将其分为投机套机和套期保值天气期货.重点介绍两种不
【摘 要】 阅读伴随着人的终身,在阅读中能美化人的心灵,提高人的素养,是一个人精神成长的重要途径。  【关键词】 学习方式;以教师为中心;个性化行为  【中图分类号】G63.3【文献标识码】A【文章编号】2095-3089(2016)15-0-01  新课程标准对阅读有这样的阐述:“阅读是学生的个性化行为,不应以教师的分析来代替学生的阅读实践。应让学生在主动積极的思维和情感活动中,加深理解和体验,