单轴扭曲模型中量子退相干对量子关联及稠密编码影响的研究

来源 :山西师范大学 | 被引量 : 1次 | 上传用户:yejing00
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着科技进步,量子信息学在各分支都有了很好的发展,但是各个分支的前身也都是量子信息学。而这些分支领域中最突出的研究主要还是对量子纠缠的研究。纠缠作为量子信息所独特拥有的资源,在新兴又引人关注的量子信息学中起到不可估量的作用。而量子纠缠的应用,如量子稠密编码、量子隐形传态等方面的研究已经不仅在物理领域有了很好的发展,甚至在医疗、军事等领域得到很好的利用。因此人们在近几年中一直热衷于对于量子纠缠应用的研究。在量子信息时代初期,量子纠缠一直被认为是和量子关联等价的。它被人们认为是量子计算比经典计算更具有优越性的唯一因素。然而量子失协的提出,让人们认识到还有比量子纠缠更能反映系统量子性质的关联。从此以后量子失协的研究便成为一个热门主题。在研究者们对量子信息处理的过程中,往往设定量子系统处于封闭的状态,忽略了环境与系统的相互作用,即产生退相干效应。考虑研究结果的准确性以及为了减弱退相干对系统的影响,对退相干的研究显得极为迫切。  基于以上原因,本文主要研究了单轴扭曲模型中內禀退相干对量子失协及量子稠密编码的影响。第一章简单回顾了量子信息的产生和发展,说明了本文的主要研究内容和章节安排。第二章介绍了量子关联中量子纠缠的定义、度量方法以及应用,在应用中主要介绍了量子稠密编码的相关理论,还给出了用量子失协表征量子关联性的一般方法。第三章讨论了考虑內禀退相干作用,单轴扭曲模型中量子失协的特性。运用控制变量法,分别研究了在不同初态下,自旋压缩参数、外磁场强度对系统量子失协(QD)特性的影响。研究结果表明:随着时间的增大,QD有明显的减小,即內禀退相干作用减弱系统的关联;QD在时间趋于无穷大或者达到一定的值时,将会到达稳定的值(SQD),即內禀退相干并不能永远减弱量子失协。此外,QD和SQD的值还受到初态的纯度、自旋压缩参数、外磁场强度的影响。具体的,为了提高稳定的量子失协,可以通过增加初态的纯度来削弱退相干作用对系统的影响。第四章讨论了在单轴扭曲模型中,考虑退相干作用,体系量子稠密编码的实现。研究了在不同初态下(贝尔态和Werner态),各个参数(退相干因子、初态的纯度、自旋压缩参量以及外磁场强度)对量子稠密编码信道容量?的影响。结果显示:随着时间的增加,?从最大值开始迅速减小,之后经历一个振荡的过程,并且振荡逐渐减弱(振荡的振幅逐渐减小),最后当时间增加到一定的值后,量子稠密编码信道容量?逐渐趋于稳定的值,即內禀退相干只在有限的时间内对体系的量子稠密编码信道容量有减弱的影响,并且对系统稠密编码的影响力度逐渐减小,直至完全不影响信道容量。此外,通过调节各个参数(增大自旋压缩参数?,或者减小外磁场强度?和內禀退相干率?)可以得到有效的、甚至是最优的稠密编码,如在贝尔态下,调节参数,在适当的范围内,使自旋压缩参数?相对于外磁场强度?足够大,就有可能使??2,即获得最优的稠密编码。值得注意的是,贝尔态下可以实现有效的甚至是最优的稠密编码,但是Werner态对于实现有效的稠密编码并不是完全可行的。
其他文献
日地空间是对人类最重要的空间环境,在这个空间内的许多现象都和人类息息相关,这些现象的爆发大部分都和太阳有关。而在这些现象中,磁重联扮演着重要角色。磁重联是一种在空间等
超构材料(metamaterials:MMs)在最近十几年的发展中,最显著的成就之一就是超构材料完美吸收器。这种人造小尺寸、超薄的单元对电磁波完美吸收的特性,让很多研究者着迷,吸波机制理论
与无机太阳能电池相比,有机太阳能电池具有造价低廉,制备方便,可应用在柔性基底上等优点,受到了越来越多的关注。目前,基于共轭聚合物给体和富勒烯衍生物受体的有机太阳能电池光电转换效率已经超过了10%。但是,相比于传统的无机太阳能电池,有机太阳能电池的光电转换效率还是较低的,这也极大的影响了其商业化应用和发展。因此,如何提高有机太阳能电池的效率依然值得人们研究。笼型倍半硅氧烷(POSS)是一种典型的纳米
本文利用超高真空扫描隧道显微镜(STM)发现在常温下单个酞菁分子能够稳定地吸附在铜(100)表面上,且吸附分子在表面上仅有两种等价的吸附取向。本文采用基于扫描隧道显微技术
老张家世代捕蛇。一日,老張教儿子如何捕捉毒蛇,儿子感叹道:“这毒蛇太可恨了,它咬伤了你,咬伤了爷爷,而且你们都险些丧命,它是我们家不共戴天的仇敌!这世界上如果没有毒蛇就好了,这样,我们家就可以捕很多很多的蛇,赚很多很多的钱。”  “傻孩子,如果没有毒蛇,捕蛇便成了一件没有任何风险的事,便成了一件人人都可做的事。人人都可捕蛇,到时我们还有蛇可捕吗?”老张说,“所以,毒蛇不但不是我们的仇敌,反而是我们
期刊