堆叠及边缘缺陷对石墨烯量子电容影响的理论研究

来源 :太原理工大学 | 被引量 : 0次 | 上传用户:mahuihui
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
具有高导电性、高比表面积特性的石墨烯材料是一类理想的双电层超级电容器(EDLC)电极活性材料,但在实用化和商业化过程中发现,石墨烯材料在生产制备过程中以及电容器的反复充放使用过程中,片层会发生堆叠,造成性能变化。为了深入探究堆叠对石墨烯材料量子电容性能的影响,本工作基于密度泛函理论,使用理论计算的方法研究了因石墨烯片层堆叠产生的层间相互作用对石墨烯材料的电子结构、量子电容性能的影响,讨论了多种基础的石墨烯拓扑结构,包括理想石墨烯、5种常见的点缺陷结构以及2种掺氮结构。另外,工业化的石墨烯电极材料产品多为微片结构且富含孔隙,这就带来了大量的石墨烯边缘区域,这些区域中存在大量成键方式与体相碳原子不同的边缘碳原子,系统研究各种边缘拓扑结构的量子电容性能对于指导产品设计、合成具有重要意义,为此,本文利用理论计算方法研究了2种稳定的石墨烯边缘构型以及2种含缺陷的中间形态的量子电容性能。计算发现(1)堆叠可以弱化拓扑结构对量子电容性能的影响,一方面使得结构相近的石墨烯之间的量子电容性能差距减小,另一方面使量子电容曲线的波形变缓。(2)缺陷可以剧烈改变石墨烯边缘拓扑结构的量子电容性能。在锯齿型边缘上引入缺陷可以显著提升量子电容性能,而在扶手椅型边缘上引入缺陷虽对提升量子电容性能作用有限,却可以大幅度改变边缘区域量子电容对电压的响应特性。总的来讲,堆叠可以抑制拓扑结构差异导致的量子电容性能变动,但过多的堆叠会使材料整体表面积减小,不利于提升质量比电容。同时,引入缺陷或者增多边缘结构虽然可以为电解液中的离子提供更多存储位点,提升双电层总体电容,但过多的缺陷、边缘也会提升石墨烯材料的电化学活性,降低在高电压负荷条件下或者苛刻的化学环境中电容器体系的稳定性。所以,理想的石墨烯电极材料还需要在加深理论认识的基础上开展实验,对其在超级电容器中的电化学行为进行系统考察。本文为应用于超级电容器电极的石墨烯活性材料的微观结构设计提供了理论支撑。由于石墨烯可被视作碳材料的基本结构单元,本工作对于碳材料的电化学性能以及应用研究也具有参考价值。
其他文献
烧结Nd-Fe-B磁体在新能源汽车、风力发电、消费电子等领域应用日益广泛,对磁体性能的要求也越来越高。目前普遍采用速凝铸片(SC)+氢破(HD)+气流磨(JM)的方法制备烧结Nd-Fe-B
镁在特异性及非特异性免疫应答中与免疫系统有着密切的关系,巨噬细胞作为免疫系统中的主要效应细胞在血管生成中的作用已被证实,但巨噬细胞源性外泌体在此过程中发挥的作用尚不明确。本课题研究了镁离子浓度(10-50 m M/L)对巨噬细胞生物相容性及免疫相关基因的调控作用,并在此基础上利用差速超速离心法提取了正常培养及镁离子刺激后的巨噬细胞分泌的外泌体。通过高分辨透射电子显微镜和纳米粒径追踪分析对巨噬细胞源
近年来,面向安防监控、食品安全、类太阳光LED健康照明以及夜光照明等领域的迫切需求,研发新型高效深红-近红外发光材料、紫光/蓝光激发新型高效稀土发光材料以及新型高效长
药物靶标是人体内与疾病相关,并能被药物作用,促使药物发挥药效功能的生物大分子,药物通过与特定疾病的靶标结合,达到疾病治疗的效果。药物靶标的选择和确认是药物研发的第一步,且药物靶标的发现有助于人们进一步理解药物运作机制、药物副作用和疾病病理。药物-靶标相互作用(DTIs)的预测是发现药物靶标的主要途径,因此,药物-靶标相互作用的预测研究在药物研发和疾病治疗领域具有重要的理论价值和应用意义。现有的基于
本论文的内容涉及对三维拓扑绝缘体(TI)薄膜的电输运性质和CoFeB/MgO多层膜中自旋轨道矩效应(SOT)的研究。我们利用磁控溅射的方法制备了 Bi2Te3、(Bi,Sb)2Te3以及Cr掺杂的拓
镁合金在航空航天、汽车、武器、电子等领域应用广泛,但因其耐磨性较差,在服役过程中易发生摩擦损伤,因此对镁合金摩擦学性能的研究至关重要。本文选择使用广泛的AZ80A、ZK60A和ME20M镁合金为研究对象,采用往复式球-盘摩擦方式,通过与GCr15钢球配副,系统研究镁合金在不同试验环境、滑动速度、载荷和温度条件下的摩擦行为,探究镁合金的磨损机理,为镁合金的工业应用提供理论依据。在干摩擦条件下,当载荷
随着煤炭行业的快速发展,带式输送机作为煤矿综采装备的重要组成部分,发展和更新是必然的一种趋势,尤其是张紧装置,已经由机电液一体化自动结构代替最初的简单机械结构。液压张紧装置和变频自动张紧装置是当前煤矿上带式输送机的主要张紧方式。实际生产中使用的液压自动张紧装置存在漏油、故障率高、张紧效率低等问题,而变频自动张紧装置在满足带式输送机工作中所需张力的同时,还能避免液压张紧装置存在的问题,当前的变频自动
在近二十年中,金属-有机骨架材料(Metal-Organic Frameworks,缩写:MOFs)作为一种独特的无机-有机杂化晶态多孔材料正在迅速兴起,这类材料通常是由相应的有机连接体和金属离子/
烧结Nd-Fe-B磁体广泛应用于高新技术领域。剩磁Br作为Nd-Fe-B磁体的主要性能指标,直接反映在磁体的使用过程中,其进一步提高对于磁体的应用和发展具有重要意义。剩磁Br与取向
氢能被视为21世纪最具发展潜力的清洁能源,是一种非常重要的低成本清洁燃料。从环保性,实用性与可持续性的角度考虑,乙醇蒸气重整制氢技术(ESR)是一种非常有前景的技术。但是由于ESR的反应途径非常复杂,涉及一系列重整和水煤气变换反应,因此,开发一种经济、高活性、高稳定性的催化剂是该领域的研究重点。本论文主要以具有高热稳定性的介孔SiO_2(mSiO_2)为载体,结合Ni、Cu的催化活性特点,构筑不同