论文部分内容阅读
低介电常数、高品质因数微波介质陶瓷材料的合成及研究是近年来的研究热点,本文制备了Sm2SiO5陶瓷,Sm4(SiO4)3陶瓷,Nd2SiO5陶瓷,Al2O3-TiO2陶瓷,MgTiO3-CaTiO3陶瓷和(Zn,Mg)TiO3-TiO2陶瓷,并用XRD、SEM、EDS和TG-DTA等多种分析测试手段及开腔谐振测试方法,研究了这些低介陶瓷的相组成、致密度和微观结构等对材料介电性能的影响,探索介电性能的演变规律,并将(Zn,Mg)TiO3-TiO2复合陶瓷用于制备多层片式陶瓷电容器(MLCC)。1.研究以非化学计量比效应合成新型的单相Sm2SiO5低介电常数微波陶瓷。当Sm2O3/SiO2摩尔比为1:1.05,在1350℃烧结4h,可得到纯的单斜Sm2SiO5相。随着温度的升高,可以得到少量的六方Sm4(SiO4)3相,并且随着温度的升高,Sm2SiO5陶瓷样品的相对密度随之增加。Sm2SiO5陶瓷在1500℃下烧结后,有优良的介电性能:εr=8.5,Q×f=64878.71GHz和τf=-37.64ppm/℃。Sm2SiO5陶瓷材料有着较宽的烧成温度范围和小的负温度系数,因此可以作为优良的介电材料用于毫米波通讯装置中。2.研究以非化学计量比效应合成新型的单相Sm4(SiO4)3低介高频微波陶瓷。发现Sm2O3-xSiO2(1.425≤x≤1.6)在1350-1600℃下烧结四个小时,均能得到纯六方Sm4(SiO4)3相。当x=1.5时,样品的介电性能: εr=9.03,Q×f=17470.76GHz (12.40GHz)和τf=-24.4ppm/℃。Sm4(SiO4)3陶瓷材料有着很宽的烧成温度范围和较小的负温度系数。3.研究以非化学计量比效应合成新型的单相Nd2SiO5低介电常数微波陶瓷。当Nd2O3/SiO2摩尔比为1:1.05,在1450℃下烧结时,第二相六方Nd4Si3O12相消失,纯单斜Nd2SiO5相出现。随着烧温的升高,Nd2SiO5陶瓷的相对密度升高。Nd2SiO5陶瓷在1500℃下烧结,介电性能: εr=7.94,Q×f=38800GHz, τf=-53ppm/℃。高自谐振频率导致低的介电常数和低的Q×f值。Nd2SiO5陶瓷有较宽的烧成温度范围,它们有潜力应用在微波被动元器件中。4.使用新颖的水基溶胶凝胶法合成0.9Al2O3-0.1TiO2包覆性纳米颗粒,用二(2-羟基丙酸)二氢氧化二铵合钛(TALH)为钛盐水基前驱体,与传统的钛醇盐sol-gel法相比,不需要乙醇做溶剂体系。本文对其制备条件进行了优化。α-Al2O3和金红石相晶粒生长指数(n)各为2.5和4,晶粒生长活化能分别为100kJ/mol和107kJ/mol。沿着晶界扩散后形成的缝合线,纳米层通过高温自组装途径生长,其微波介电性能:εr=10.4, Q×f=18000GHz, τf=-10.8ppm/℃(在1300℃烧结)和εr=13, Q×f=32000GHz, τf=45ppm/℃(又在1100℃下退火10h)。5.采用固相法合成MgTiO3-CaTiO3复合陶瓷,加入CaTiO3用来调节MgTiO3过负的频率温度系数,加入3ZnO-B2O3可以促进体系的烧结。(a) MgTiO3-CaTiO3陶瓷随着CaTiO3掺入量的增加,体系的介电常数和温度系数随之增加,品质因数随之下降,样品的介电性能与微观结构和晶相转变有着密不可分的联系。0.97MgTiO3-0.03CaTiO3在1300℃下具有优良的微波介电性能: εr=18.23, Q×f=76529GHz (7.37GHz)和τf=-34.68ppm/°C。(b)适量的ZB掺杂0.97MgTiO3-0.03CaTiO3,在降低烧温的同时,并没有明显恶化体系的介电性能。0.97MgTiO3-0.03CaTiO3+2wt.%ZB在1225℃下具有优良的微波介电性能: εr=17.96, Q×f=79346GHz (7.47GHz)和τf=-34.93ppm/°C。6.采用固相法合成(Zn,Mg)TiO3-TiO2复合陶瓷,加入TiO2用来稳定(Zn, Mg)TiO3六方相和调节谐振频率温度系数,加入3ZnO-B2O3可以促进体系的烧结,体系遵循液相烧结机理,烧结过程中有明显的晶界运动。SEM和EDS显示,在烧结过程中,游离的(Zn, Mg)TiO3颗粒会在晶界上产生偏析甚至脱溶出来分凝在晶界上。SnO2因为能阻止晶界扩张而被用做晶粒细化剂。样品的介电性能与微观结构和晶相转变有着密不可分的联系,我们发现(Zn, Mg)TiO3-0.25TiO2+1.0wt.%3ZnO-B2O3+0.1wt.%SnO2(ZMTZBS,1000°C)呈现优良的介电性能: εr=27.7, Q×f=65494GHz (6.07GHz)和τf=-8.88ppm/°C。7.用介电性能优良的ZMTZBS陶瓷粉料成功制造了具有良好电性能的多层片式陶瓷电容器。我们发现:随着电容量增加,电容器的自谐振频率和等效串联电阻相应减少,而品质因数随着频率或电容量增加而减少。