参与光敏性茶树黄魁叶绿素降解的CsMESs基因功能研究

来源 :安徽农业大学 | 被引量 : 0次 | 上传用户:bylee
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
茶树(Camellia sinensis(L.)O.Ktze)是多年生常绿木本植物,属于亚热带植物。在其生长发育过程中,经常观察到叶色有黄化或白化症状。在此背景下,一些黄化的品种被筛选出来,如黄金芽和黄魁品种等。由于它们独特和鲜爽的口感滋味,这类茶制品正在成为市场热销的品种。植物黄化或白化的分子机理远没有完善,其中叶绿素破坏,叶绿体解体、光合系统破坏的调控基因目前还未知。黄化茶树品种黄魁,其种子苗萌发后表现出不同的叶色,我们根据叶色将其分别命名为G、Y和W。其可以作为研究茶树黄化机制的优良材料。本论文探究了其色素、叶绿素荧光及叶绿体超微结构的差异;通过对转录组数据的分析,筛选得到了可能与叶色相关的三条候选基因,均属于甲基酯酶(Methylesterase,MES),分别命名为Cs MES1、Cs MES2以及Cs MES3,对其进行酶动力学和基因功能探讨,这对于优质茶树品种资源的开发利用和黄化茶树中叶绿素降解调控因子的功能研究等提供一定的理论依据。主要结果如下:1)本论文首先通过对黄魁种子苗(G、Y、W)的色素、叶绿体荧光以及叶绿体超微结构进行分析,发现黄魁叶色的差异与色素含量以及叶绿体结构发育完整程度密切相关。2)本论文还通过遮荫和高光处理,探究黄魁种子苗(G、Y、W)对光照的响应。发现遮荫只会使Y叶色变深,叶绿素a和叶绿素b含量增加。而高光照射,则会使G和Y的叶色变浅,色素含量降低,还会使W出现死亡的现象。即叶色越浅,对光照响应的敏感性越强。3)通过qRT-PCR技术,检测Cs MESs在茶树不同品种和不同组织的表达,以及茶树在受到盐、Me JA、干旱、冷以及高光胁迫后的表达情况。实验发现,只有Cs MES1始终在叶色更浅的植株中表达量更高;三条Cs MESs不论在舒茶早中,还是在黄魁中,均在成熟度更高的组织器官中高表达。综上,我们推测Cs MES1最有可能参与叶绿素降解。且三条Cs MESs在盐、Me JA、干旱和冷胁迫下可能会加速叶绿素的降解。4)通过对茶树CsMESs基因功能的研究,发现Cs MESs蛋白均定位于细胞质中;Cs MES1蛋白可以水解脱镁叶绿酸a以及Me IAA;Cs MES1超表达的拟南芥叶色浅且叶绿素a的含量少;当对其外源施用Me IAA时,其根长相较于对照会更短;而当其生长在有Me JA的培养基上时,侧根相较于对照会明显变多。表明Cs MES1可以参与叶绿素降解途径,也可以水解Me IAA,并且会对植物叶色、色素以及生长产生影响。
其他文献
牡丹籽粕是一种新型的蛋白质饲料,具有较高的开发潜力。为了更好的开发牡丹籽粕的饲用价值,降解其中的皂甙,本研究对牡丹籽粕的皂甙成分进行初步分析,再利用单菌(枯草芽孢杆菌)和复合菌(枯草芽孢杆菌、酵母菌),发酵降解牡丹籽粕中的皂甙,优化固态、液态发酵降解皂甙的条件,结果如下:(1)通过两种方法提取牡丹籽粕中的皂甙,结果得出乙醇浸提法提取的最优条件为:料液比1:8,乙醇浓度70%,在70℃条件下提取90
学位
巢湖湿地作为典型的亚热带湿地,在维护生物多样性、蓄洪防涝、旱时蓄水、调和区域气候等方面发挥着重要功能。然而,流域城镇化快速发展,导致巢湖流域的湿地资源遭到严重破坏,主要表现为湿地整体面积大幅减少和核心区退化、生物多样性降低、水环境受到破坏。因此,从湿地的生态属性出发,对其土地利用结构、景观格局变化、植被生长状况进行研究和监测是十分必要的。目前对于环巢湖湿地的研究多集中在整体生态环境评价上,对环巢湖
学位
株高是现代玉米育种中一个重要的农艺性状。矮化或半矮化性状赋予玉米品种许多优势,例如抗倒伏能力增强、适宜密植、收获指数提高等,对玉米增产稳产具有重要意义。WRKY转录因子是植物中最大的转录调控因子家族之一,是植物信号网络的重要组成部分。研究发现,WRKY家族成员不仅广泛参与了植物的非生物胁迫防卫反应,而且在植物生长发育、形态建成和株高株型调控方面发挥着重要作用。本研究基于实验室前期工作,以过量表达Z
学位
<正>防空反导是世界主要军事强国作战力量的重要组成部分,高效的指挥控制系统是防空反导武器系统作战效能的倍增器。美国作为全球军事上最强大的国家,在防空反导领域的发展更是首屈一指。本文从美国防空反导指挥控制系统入手,对其典型指挥系统的发展进行了初步探析。
期刊
如何治疗细菌感染引起的败血症是一个巨大的挑战,目前临床的治疗手段主要有对症治疗和抗生素治疗,其中对症治疗无法杀死病原菌,且耐药菌株的产生使抗生素的疗效已经远不如从前。光热疗法的出现逐渐引起研究者的广泛关注,并为治疗败血症提供一个新的策略。本文设计并合成了Cu2O包裹Se球的核壳纳米材料(Se@Cu2O)。首先利用败血症引起的高含量内源性H2S,体内硫化Se@Cu2O后转化成具有光热效应的Se@Cu
学位
随着工业的持续发展,甲醛污染日益严重,对人体健康和生态环境等有重要影响。长期处在高浓度甲醛的环境中会引发咽喉肿痛、肺气肿等疾病,严重时甚至会诱发癌症。因此,甲醛污染是亟需解决的问题。目前消除甲醛污染的方法存在成本高、甲醛降解不彻底、导致二次污染等缺点。研究表明利用微生物降解甲醛可有效避免这些缺点,且甲醛脱氢酶将甲醛氧化成甲酸是解决甲醛污染问题的关键途径之一,但目前报道的微生物法降解甲醛的效率偏低,
学位
本文以高花青素、晚抽薹为主要育种目标,应用常规育种技术,以5个紫色不结球白菜品种与15个绿色不结球白菜品种为实验材料,使用去雄法进行杂交,得到58个杂交组合,对亲本及F1代进行农艺性状测量、生理生化检测;使用秋水仙素法诱变并进行生理生化检测及细胞学鉴定。以此提升不结球白菜育种水平和自主创新能力,筛选不结球白菜优异新种质资源。研究内容与结果如下:(1)杂交植株中,父本是紫高-1、紫矮-1、紫色小青菜
学位
水稻(Oryza sativa L.)是世界的主要粮食作物,全球一半以上的人以大米为主食。水稻生长发育过程易受到各种胁迫的威胁。其中高温胁迫尤为突出,过高的环境温度会导致水稻植物生长缓慢、花期延迟、小穗不育和米质变差等。我国水稻主产区常常因抽穗期持续极端高温天气而导致大面积减产,甚至绝收。因此,培育耐热品种是是应对高温热害的最有效途径。而发掘水稻耐热QTL和解析水稻耐热机理,将为耐热品种的培育奠定
学位
鸭坦布苏病毒(duck Tembusu virus,DTMUV)是一种蚊媒传播的新型黄病毒,给东南亚国家和中国的家禽产业造成了巨大的经济损失。目前,还没有抗病毒药物可有效对抗这种病毒的相关报道。(-)-Epigallocatechin-3-gallate(EGCG),一种大量存在于绿茶中的多酚成分,最近已被证明对许多病毒具有抗病毒活性;然而,EGCG对DTMUV的感染是否有抑制作用仍然未知。本研究
学位
α-淀粉酶是具有广泛应用价值的一类工业用酶,其耐酸碱及热稳定的特性决定着α-淀粉酶的应用方向。为获得高效应用于饲料工业的淀粉酶,即在低p H条件及40℃环境下具有高活力和高稳定性的α-淀粉酶,本研究克隆表达了贝莱斯芽孢杆菌D1的α-淀粉酶并对其进行突变改良,采用结构生物学、计算机模拟、基因定点突变等技术进行合理设计进行分子改造,并用Escherichia coli BL21重组表达α-淀粉酶,同时
学位