论文部分内容阅读
姿态估计具有广泛的应用,如空中,水下,机器人,导航系统,游戏,工业,增强现实系统等。目前,在该领域的深入研究已经产生了许多完善的估计方法,其中复杂的如卡尔曼滤波,简单的如互补滤波器。一般而言,传统的姿态或角度估计滤波器的计算复杂度较高。为此,研究令人满意的、精确的、计算复杂度低的算法是本文的初衷。因此,为了针对某些应用,给出鲁棒性强、简单、高效的方法,互补滤波器(CF)得到了长足的发展。 首先,互补滤波器的最新应用是基于固定增益互补算法(FGCF)和渐变下降的互补算法(GDCF),该方法被用于基于微机电系统(MEMS)的惯性测量单元(IMU)中。这些固定增益估计器分别使用陀螺仪和加速度计进行高低频姿态估计。结合不同的实际应用,通过 MPU6050 IMU的仿真和实验验证了 GDCF和 FGCF的性能。由于在没有辅助传感的情况下使用 IMU,两个滤波器的性能仅限于欧拉距离和侧倾角度的姿态估计。两者的估计结果相近,但是,FGCF比 GDCF略有优势,其一是具有更高的精度,其二是该方法的两个可调增益能够提供额外的选择。此外,相比于 GDCF,FGCF滤波器增益的波动较小。两种算法的计算复杂度几乎相同。 其次,本文分别使用 FGCF和 GDCF算法,以及扩展卡尔曼滤波法,进行MEMS IMU的姿态估计,并比较了估计的结果。基于MPU6050 IMU的仿真和实验数据,使用欧拉角度估计,对估计器的性能进行了评估,评估的依据是均方根误差(RMSE)。此外,通过调整参数进行算法寻优。结果表明,在不考虑计算负荷的前提下,卡尔曼滤波及其变体算法是解决位置和姿态估计问题的标准方法,FGCF和 GDCF是解决此问题下的有效方法。结果评估中, EKF的效果最佳,但与 CF相比,计算时间更长。与 GDCF相比,FGCF有一点优势,部分原因在于FGCF的可调增益能提供更多的选择。 再次, FGCF、变增益互补滤波器(VGCF)和扩展卡尔曼滤波器(EKF)是许多应用的有效解决方法,它们具有固定增益,计算复杂度分别为简单、中等和复杂。MEMS IMU互补滤波器的精度,可以在少量计算的前提下,通过改变/切换滤波器增益的方法得到提高。这两种方法都可以有效地用于辅助INS系统,其中寻求较小计算负荷的算法是该应用的主要研究方向。用于姿态估计的 GDCF具有固定的增益,其数值不会随系统的动态条件发生改变,这种情况会导致估计的错误。而复杂的算法由于具有较高的计算复杂度,不适用于大多数应用对系统资源的限定。我们提出了模糊优化互补滤波(FTCF)算法来消除误差,并保证最小的计算负荷。所提出的算法与卡尔曼滤波算法进行了比较与评估。结果证明,与 GDCF相比,FTCF大大减少了姿态估计的误差。验证了每个动态条件下滤波器增益的调整都在减小姿态估计误差方面发挥了作用。此外, FTCF具有很小的计算成本,但其性能优于GDCF,与复杂的卡尔曼滤波相近。 最后,本文基于所提出的惯性 SLAM算法,使用 IMU的输出数据和声纳观察到的特征来估计潜水器的速度和姿态,估计过程不使用其它诸如 GPS等定位系统。惯性 SLAM算法是 INS和 SLAM算法的组合。与 EKF-SLAM相比,惯性 SLAM的时间复杂度更低。所采用的粒子滤波器仅需使用较少的粒子数就可以达到EKF-SLAM的精度,并具有更快的计算速度。