南方校园步行系统评价与优化设计研究 ——以深圳大学为例

来源 :深圳大学 | 被引量 : 0次 | 上传用户:renzha2hao
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,随着时代的发展,各地高校数量的增多,可持续校园的理念被运用于校园规划与建设中。步行作为最“绿色”的出行方式,得到校园可持续规划的重视。在新校园的交通系统规划设计中,逐渐体现出“人车分离”和“步行者优先”的设计原则。但在多数已建成的大学校园中,由于在规划设计之初对步行系统的重视不够,校内的步行空间存在着一些亟待解决的问题。针对这些问题,需要通过有针对性的优化设计,创造更加便捷、舒适的步行空间,促使学生主动提高步行的出行频率。学生群体作为校内步行空间的主要使用人群,对步道的实际使用效果具有直观的体验和感受。因此,本文从学生的角度出发,运用环境行为学中的实地调研方法,并结合行人仿真模拟的研究方法,以深圳大学粤海、沧海校区为例,对校内的步行系统进行评价与优化设计研究。本文主要分为三大部分:第一部分为研究的基础、准备阶段。通过文献的搜集与阅读,了解相关的国内外研究现状;明确研究范围及步行系统的相关概念及理论知识,总结出大学校园步行系统的组成部分,归纳了影响步行体验的步行空间形态、规划类型以及其他影响因素;确定使用环境行为学及仿真模拟的研究方法;对国内外优秀的大学校园步行系统进行分析。第二部分为分析问题阶段。首先对深圳大学两校区的步行系统展开实地调研。通过问卷及观察调研的方式,得出步行环境的满意度主要与步道的便捷程度呈正相关等结论;分别从外界干扰、步道设计、周围环境、配套设施的角度对学生选出的步道进行评价;发现教学区组团步道的问题主要在于规划类型不合理、步道设计不合理,而宿舍区组团步道的问题主要在于步道设计层面的不合理。然后针对各步道组团中规划布局及步道设计层面的问题,采用微观行人仿真模拟的方法,对步行空间及步行行为进行模拟,并对现有步道的通行能力、通行效率进行评价,同时预判出各步道的最大通行人流量。第三部分为解决问题阶段。结合实地调研及软件模拟的评析结果,针对校内具体的步行空间提出优化方案,运用MassMotion软件对步道的规划布局、形态进行调整,对比分析各组优化方案,最终得出最优方案。在创新层面,本文运用环境行为学的研究方法,充分发挥学生使用步行空间的主体地位,让他们挑选出需要优化的步行空间,间接参与步行系统的优化设计;将现场观察调研数据与行人仿真结合,模拟了上下课学生的步行行为,量化评估了校内步行空间的通行能力及通行效率,并对现有步行空间的最大人流量做出预判;通过模拟软件,实现具体优化方案的模拟,初步得出步行空间优化策略。
其他文献
中空结构微纳材料具有低密度、高比表面积和高孔隙率等优势,能缩短质子和电荷传输路径,因此在纳米催化、气体传感、药物载运和能量存储转换等领域得到广泛应用。集成多种材料的中空结构复合材料,组分间的协同效应能增强单一材料各自的功能。然而中空结构碳基材料的制备过程需要酸碱刻蚀,可能会导致复合材料特殊功能严重劣化。因此,寻找一种不需要蚀刻去除模板的新工艺是中空结构碳基材料实现可控制备的首要任务。本论文提出一种
人类对能源需求不断增长以及对由化石燃料燃烧引起的污染的担忧,正推动着先进能源存储技术的快速发展。锂离子电池具有体积比容量大,无记忆效应等优势被视为是极其重要的新型能源储存和转化器件。现在商业化的锂离子电池负极材料主要是石墨,但其过低的比容量(372 m Ah g-1),已不能满足当今社会发展对高能量密度材料的需求,因此,急需开发新型的负极材料。现今大量的研究工作主要聚焦于如何开发高比容量的材料,降
膜蒸馏(Membrane distillation,MD)是基于膜的热蒸发工艺的一种海水淡化技术,进料侧表面上蒸发产生的水蒸汽通过膜孔扩散到膜的另一侧,被冷侧循环水冷凝而实现脱盐。由于其高脱盐率、低成本和模块化设计等优点,具有广阔的应用前景。然而对于传统的膜蒸馏系统,其固有的温度极化现象(进料侧的膜表面的温度低于上部进料液体的温度),阻碍了其大规模的工业化应用。近年来,人们在传统MD技术中引入太阳
锂离子电池由于输出电压高、容量高、循环寿命长以及良好的环境友好性等诸多优点,经过20多年飞跃式的发展,已经成为便携式电子产品和其他清洁能源的储能电源。但是在动力电池领域的相关技术却未获得较大突破,因此开发可靠廉价的负极材料,对锂离子电池的发展至关重要。同时,因为锂硫电池有高的理论比容量(1675 m Ah g-1)和高能量密度(2600 Wh kg-1),并且硫来源广泛、价格低廉、环境友好,该体系
随着新型电动汽车和便携式电子设备的快速发展,对高功率、绿色、安全的储能设备的需求越来越大。锂离子电池(LIBs)以其高能量密度和稳定的电化学性能而备受关注,被认为是最具潜力的储能技术之一。目前商用石墨负极的理论容量较低(~372m Ah·g-1),限制了高能量密度LIBs的发展。因此,开发环境友好、高容量、具备优异循环及倍率性能的锂离子电池负极材料势在必行。四氧化三钴(Co3O4)因其理论比容量高
随着社会的快速发展,预计到2040年,全球上路汽车数量将达到20亿辆。交通安全事故渐渐成为城市交通系统发展的一大隐患,并成为儿童与青少年的首要死因,人们对于安全出行这方面也十分关注;伴随自动驾驶概念因素的加入,交通系统需要解决的安全与效率问题日益突出,如何使交通系统更加安全与高效率也一直成为学者们研究的一个大方向。路径推荐在智能交通是一个比较重要的应用,可以根据驾驶员的出行需求,所规划的路线也会有
可充电电池是我们现代社会不可或缺的一部分,可在多种应用中按需提供电能,其研发主要集中在锂离子电池技术上。与此同时,由于具有丰富的资源,低廉的价格,相似的化学性质,钠离子电池正逐渐成为能量存储的潜在候选者。然而,目前商业化的石墨负极因其较低的理论容量无法满足人们需求,因此,开发低成本、高容量的新型负极材料是研究的重点。最近,锑基材料(金属锑、锑基合金、锑硫族化合物及其复合材料)因其相对较低的价格和较
驾驶行为分析和风险预测对于道路交通安全、智慧城市、无人驾驶和金融保险等领域具有重大意义。随着汽车保有量的逐年增长,道路环境日渐复杂,交通安全问题越发严峻。为了保障道路交通中的生命财产安全,分析驾驶行为和预测风险已刻不容缓。然而,由于各种条件限制,现有的驾驶风险分析工作面临着若干挑战。首先,目前的一些驾驶行为分析和风险预测工作通常以粗粒度的方式来评价驾驶风险,缺少对驾驶行为进行细致描述并且无法发掘潜
危险驾驶行为不仅会造成了严重的交通事故,而且会导致重大的生命财产损失。对驾驶员危险特征进行提取有利于道路安全。很多保险公司无法识别在交通事故中产生了巨额赔付的驾驶员中的高风险客户,因此这是导致车辆保险行业利润减少的最重要的因素之一。所以对驾驶员进行危险特征提取有助于保险公司识别危险驾驶员,从而调整定价策略以提高盈利。因此,驾驶员危险特征提取在道路安全以及车辆保险计价均扮演重要的角色。传统的驾驶员危
资源枯竭和环境污染是当今世界上的两项巨大挑战。建筑作为人类主要的居住环境,是能源消耗和污染排放的主要贡献者之一,建筑业必须成为节能减排的重点,同时应承担为人类提供舒适健康的使用空间以及良好生态效益的任务。中国是目前世界上最大的排放国和最大的能源消费国,为解决这两个问题,促进绿色建筑的发展势在必行。绿色建筑可以在建筑的使用周期内尽可能最大化的实现节约资源、保护环境的目标,并且为人们提供健康舒适的使用