基于驾驶行为数据的动态规避风险路径推荐研究

来源 :深圳大学 | 被引量 : 0次 | 上传用户:zp283106190
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着社会的快速发展,预计到2040年,全球上路汽车数量将达到20亿辆。交通安全事故渐渐成为城市交通系统发展的一大隐患,并成为儿童与青少年的首要死因,人们对于安全出行这方面也十分关注;伴随自动驾驶概念因素的加入,交通系统需要解决的安全与效率问题日益突出,如何使交通系统更加安全与高效率也一直成为学者们研究的一个大方向。路径推荐在智能交通是一个比较重要的应用,可以根据驾驶员的出行需求,所规划的路线也会有所不同。推荐出从起始出发地点到目的地点的最优路线,使路网中的资源利用最大化,这便是车辆的路径推荐的目的。在路径推荐方面,许多研究者都是以出租车的方面研究最短、最快路径的推荐算法为例,还有从其他方面通过对道路附近的景观研究推荐道路,同时在安全路径推荐方面的研究,研究者通过治安犯罪的数据、路段区域的评价等等数据进行研究,而根据驾驶行为的研究较少。在动态路径规划中,传统的路径推荐的算法推荐的路径较为单一,且有时候效率较差。本文提出了一种基于驾驶行为的动态规避风险路径推荐的方法,该方法可以持续动态的对模型进行更新,并优化路径,可以推荐出风险较低同时路程较短的路径。在轨迹数据的地图匹配的处理后,由于轨迹数据匹配到路段上产生了数据的稀疏性问题,本文引入地图上的POI(Point of Interest)的信息对路网中的路段利用路段地理上的相似性使用K-Means算法进行聚类,结合Voronoi图给路段划分区域,并根据缺失路段的相邻区域内统计的车流量为权重对缺失路段的风险数据进行插值,解决了路段风险数据稀疏性的问题;接下来使用GBDT(Gradient Boosting Decision Tree)方法进行路段风险的预测,并建立风险路网图。最后基于这个风险路网图使用蒙特卡洛树搜索算法进行道路的推荐。实验结果表明,我们的算法推荐出来的路段在路段距离与路段风险进行了优化,相比于传统算法推荐出来的最短路径降低6%的风险值,路段的长度只增加了13%左右。因此,我们提出的系统能够促进道路安全,为驾驶者带来便利。
其他文献
不可再生资源化石燃料的过度开采和使用造成了能源匮乏和环境污染两大问题,开发高效、绿色、友好的可持续新能源成为二十一世纪的重大挑战。质子交换膜燃料电池等新型燃料电池效率高、排放低、能量密度高,是一种可持续的先进能源技术。在这些燃料电池中,阴极氧还原反应(Oxygen reduction reaction,ORR)的动力学性质十分缓慢(比阳极反应慢六个或更多个数量级),限制了电池的性能,从而影响了它的
过度消耗的化石燃料和不断增长的能源需求引起了人们对发展新能源的极大关注,人们致力于寻找环境友好型可持续清洁能源代替传统能源,如太阳能、风能等。但是这些绿色能源却受到地理环境、人文因素、设备等条件因素的制约,不利于人们对清洁能源的广泛开发和利用。因此研发新型高能量的能源具有十分重要意义。电催化剂是下一代可再生能源系统如水分解,金属空气电池和燃料电池的核心,应用领域非常广泛。本文的主要研究方向是电催化
乳糖是乳制品的重要组成原料,其相态转变会引起乳制品加工和贮藏过程中的许多问题进而直接影响产品的质量和货架寿命,例如乳粉或豆乳粉加工过程中经常出现的粉体结构塌陷、结块、风味散失以及相分离导致的溶解速率缓慢等均与乳糖的相态变化相关,因此,了解乳糖的相态转变机理对干燥乳制品加工具有极其重要的意义。本文通过量子化学计算发现α-和β-乳糖及α-乳糖一水合物晶体结构的分子振动会受到异构化和水分子存在的影响。基
目前正在使用的化石能源在地球上储量有限,并且是不可再生的,人们基于对化石能源过度消耗以及环境污染加剧的担忧,已经开发了各种用于存储和转化能源的新技术。锌-空气电池和电解水制氢被认为是未来最有潜力的实用技术之一。然而,由于多电子转移过程以及氧还原反应(ORR),氧析出反应(OER)和氢析出反应(HER)的动力学缓慢,因此非常需要开发先进的电催化剂来减少反应的过电势,加快反应动力学和提高转换效率。当前
具有高理论能量密度,低成本,高安全性等优点的可循环充放电锌-空气电池被认为是极具潜力的储能系统。设计合成出能降低反应过电位,提高电极反应效率,增强循环稳定性的廉价电催化剂是解决锌-空电池发展应用中所遇问题的关键。研究表明,将过渡金属纳米粒子包覆在石墨烯层或碳纳米管中能够为氧还原反应(ORR)和氧析出反应(OER)带来了非凡的活性和稳定性,从而使得该类非贵金属纳米催化剂替代贵金属催化剂成为了可能。在
中空结构微纳材料具有低密度、高比表面积和高孔隙率等优势,能缩短质子和电荷传输路径,因此在纳米催化、气体传感、药物载运和能量存储转换等领域得到广泛应用。集成多种材料的中空结构复合材料,组分间的协同效应能增强单一材料各自的功能。然而中空结构碳基材料的制备过程需要酸碱刻蚀,可能会导致复合材料特殊功能严重劣化。因此,寻找一种不需要蚀刻去除模板的新工艺是中空结构碳基材料实现可控制备的首要任务。本论文提出一种
人类对能源需求不断增长以及对由化石燃料燃烧引起的污染的担忧,正推动着先进能源存储技术的快速发展。锂离子电池具有体积比容量大,无记忆效应等优势被视为是极其重要的新型能源储存和转化器件。现在商业化的锂离子电池负极材料主要是石墨,但其过低的比容量(372 m Ah g-1),已不能满足当今社会发展对高能量密度材料的需求,因此,急需开发新型的负极材料。现今大量的研究工作主要聚焦于如何开发高比容量的材料,降
膜蒸馏(Membrane distillation,MD)是基于膜的热蒸发工艺的一种海水淡化技术,进料侧表面上蒸发产生的水蒸汽通过膜孔扩散到膜的另一侧,被冷侧循环水冷凝而实现脱盐。由于其高脱盐率、低成本和模块化设计等优点,具有广阔的应用前景。然而对于传统的膜蒸馏系统,其固有的温度极化现象(进料侧的膜表面的温度低于上部进料液体的温度),阻碍了其大规模的工业化应用。近年来,人们在传统MD技术中引入太阳
锂离子电池由于输出电压高、容量高、循环寿命长以及良好的环境友好性等诸多优点,经过20多年飞跃式的发展,已经成为便携式电子产品和其他清洁能源的储能电源。但是在动力电池领域的相关技术却未获得较大突破,因此开发可靠廉价的负极材料,对锂离子电池的发展至关重要。同时,因为锂硫电池有高的理论比容量(1675 m Ah g-1)和高能量密度(2600 Wh kg-1),并且硫来源广泛、价格低廉、环境友好,该体系
随着新型电动汽车和便携式电子设备的快速发展,对高功率、绿色、安全的储能设备的需求越来越大。锂离子电池(LIBs)以其高能量密度和稳定的电化学性能而备受关注,被认为是最具潜力的储能技术之一。目前商用石墨负极的理论容量较低(~372m Ah·g-1),限制了高能量密度LIBs的发展。因此,开发环境友好、高容量、具备优异循环及倍率性能的锂离子电池负极材料势在必行。四氧化三钴(Co3O4)因其理论比容量高