【摘 要】
:
旋翼式无人机具备机械结构简单、可悬停以及可垂直起降等特点,在军事以及民用各个领域中都具有广泛的应用场景,开展旋翼式无人机惯性导航算法与控制算法的研究对开展理论科学探索、推动相关产业发展具有重大的意义。本文采用一款ARM7系列的微处理器开发了一套开放式的四旋翼飞行控制平台,该平台具有软硬件开放性、成本低、通用性、兼容室内外场景下多种控制模式等特点。本文首先在总结国内外相关文献与设计经验的基础之上,进
【基金项目】
:
“上海张江国家自主创新示范区专项发展资金重点项目”,项目编号201411-PD-JQ-B108-009;
论文部分内容阅读
旋翼式无人机具备机械结构简单、可悬停以及可垂直起降等特点,在军事以及民用各个领域中都具有广泛的应用场景,开展旋翼式无人机惯性导航算法与控制算法的研究对开展理论科学探索、推动相关产业发展具有重大的意义。本文采用一款ARM7系列的微处理器开发了一套开放式的四旋翼飞行控制平台,该平台具有软硬件开放性、成本低、通用性、兼容室内外场景下多种控制模式等特点。本文首先在总结国内外相关文献与设计经验的基础之上,进行了控制平台的核心处理器、传感器模块以及其它外设器件的选型工作。然后在遵循最小化硬件尺寸与降低传感器噪声的设计理念下,进行了控制器的硬件电路设计工作。本文推导了旋翼式无人机的动力学方程,X型机架结构下电机转速的分配模型,并设计了姿态角度控制器与空间位置控制器级联型的无人机位姿PID控制器,为嵌入式控制程序的实现提供了理论的依据。本文在Simulink中搭建了该位姿控制器,利用Matlab环境下的开源工具箱中提供的动力学模型,仿真验证了控制器的有效性。在实际控制算法的实现过程中,由于无人机机载的各类传感器测量信息都存在一些缺陷,使用单一的微传感器无法准确进行四旋翼无人机空间位姿状态的实时反馈。针对于这个问题,本文基于一种互补滤波算法,采用对角速度进行修正积分的方式实现了无人机空间姿态的估计。在空间位置估计方面,本文采用了一种基于加速度信息修正的多元信息融合算法实现了空间位置的实时估计与反馈。最后,本文通过在室外环境中进行无人机的位姿控制实验,证明了采用本开放式控制平台可以实现无人机在室外环境中的高度控制以及水平位置控制。同时本文利用本开放式控制平台在多种机架上进行飞行控制实验,均实现了稳定的位姿控制,证明了本开放式平台具有通用性。在本开放式平台的基础上,依托于Matlab科学计算工具以及Vicon运动捕捉系统组成了一个硬件在环仿真实验平台,并对硬件在环仿真实验平台的可行性进行了实验验证。
其他文献
基于惯性测量单元的实时定位与建图(Simultaneous Localization And Mapping,SLAM),即视觉惯性SLAM,是机器人定位、自动驾驶等领域的关键技术,该技术建立了物体在现实世界中的运动轨迹的数学模型。本文主要讨论了基于稀疏地图的嵌入式视觉惯性SLAM系统。在嵌入式平台上,单目相机采集图像流,经过特征提取与匹配输出图像特征匹配,惯性测量单元(Inertial Meas
灵敏的X射线探测器在医学诊断、安全筛查和工业产品检验中有着至关重要的意义。Cs2Ag BiX6和Cs3Bi2X9无铅钙钛矿材料由于具有较高的稳定性且无毒,并且表现出较高的灵敏度和较低的检测限,有望大量应用于X射线探测领域。本文主要在化学计量比基础上,通过添加不同的溶质和溶剂的方式,研究了不同添加剂对Cs2AgBiBr6晶体尺寸以及性能的影响,同时研究了低维钙钛矿Cs3Bi2X9晶体的生长以及光电性
室内定位在人们的生活、工作与学习中扮演着重要的角色,为人们的衣食住行提供着巨大的便利。主流的室内定位技术针对不同场合使用不同的定位方法,面临着场景应用中的各种功耗、成本、定位精度低等局限性问题。随着计算机视觉技术的不断发展,深度学习方法为室内场景重定位提供了一种新的基于视觉的重定位技术。提出一种基于级联深度神经网络的场景重定位算法,只需输入单张RGB图片,即可给出该张图片的相机姿态,实现场景的重定
工业机器人是自动化柔性制造中一个非常重要的组成部分,然而示教编程的复杂性和高成本阻碍其在中小型企业的广泛使用。将虚拟现实技术和工业机器人的示教编程结合起来,可以降低示教编程的技术门槛和部署成本,实现工业机器人在高混合小批量生产中的广泛应用。本文针对虚拟现实平台开发、工业机器人示教编程等需求,研究基于虚拟现实的工业机器人示教编程平台设计与实现中的关键技术。针对目前国内专业的工业虚拟现实平台较少,利用
稀土永磁材料已经在计算机、通信、汽车、航空飞机、风力发电等领域具有非常广泛的应用,日益发展的新科技也对稀土永磁材料提出了更高的要求。当代主流稀土永磁材料Nd Fe B的实际磁性已接近其理论磁能积,因此寻找下一代更高磁能积的稀土永磁材料成为研究热点。Sm-Co基材料凭借其优异的磁性能与良好的热稳定性成为航空、军工领域的热门材料。本文筛选了SmCo5原料,并选用其作为硬磁相和高磁化强度的Fe为软磁相,
功能碳材料具有导电性好、比表面积大、结构多样等优异的物化特性,常被用于能源、催化等领域。在能源转化与存储方面,功能碳材料由于具有优异的物化性能,是一类重要的电极材料。发展新型功能化碳材料并探索其在可再生能源的存储与转化领域的应用具有重要意义。近年来,使用各类铁源,与种类丰富的氮、碳源制备分级多孔结构且具有丰富Fe、N等活性位点的Fe-N-C材料,并将其作为电极材料用于能源的存储与转化方面,引起了研
磁性纳米材料除了拥有纳米材料存在的优异的物理及化学性能外,还表现出独特的磁性能。现有的研究手段无法使我们在反应过程中实时观察,而透射电子显微镜(TEM)原位技术则能够进行原位观测和结构表征对于理解磁性纳米颗粒结构性质关系具有重要意义。Fe3O4纳米颗粒由于独特的化学稳定性,无毒,生物相容性成为磁性纳米颗粒中研究最多的材料。自组装是可以将一些无序的纳米组件自发组装成有序结构的技术,但对三角片状Fe3
正交异性钢桥面板疲劳问题严重,亟需解决。进一步优化桥面板结构体系,是解决该问题的有效途径。本文基于现有的桥面板型式,提出了由波形钢板和超高性能混凝土(Ultra-high Performance Concrete,UHPC)组合而成的这一新型桥面板结构。与传统正交异性钢桥面板相比,UHPC层能够显著提高桥面板的刚度;波形钢板能通过减少焊缝和几何不连续部位数量从而改善局部应力集中。为验证该组合桥面板
船舶作为漂浮在海上的建筑物,其振动问题也随着高速化的进程而凸显出来。船体尾部较平行中体而言刚度较弱,且直接受到螺旋桨激振力作用,因此其往往是有害振动集中的区域。目前工程上主要采用有限元数值模拟的方法预报船体尾部振动特性,但数值模拟方法的工程精度仍需要通过实测数据来验证,此外在研究尾部结构振动传递特性时,目前主要通过测量点与点之间的传递函数,其尚不足以描述具体的传递路径。基于此,本文将开展船体尾部振