用于行波管放大器的毫米波线性化驱动模块研究

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:kxlzyc
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着通信技术的不断发展成熟,低频通信已经无法满足人们日益增长的需求,对于卫星通信系统而言,目前使用最为普遍的是Ku/Ka波段,但在这两个频段内,信号通信带宽较窄,并且传输速率较低,会增加系统调制解调的复杂性。为了获得更大的信道容量以及缩短信号传送时间,国内卫星通信领域专家在如何利用毫米波以上频率的问题上进行了深入研究。但无论哪个频段,对一个通信系统来说最重要的还是信号传输的准确性。以功率放大器为核心的系统,当输入功率较大时,功率放大器的非线性特性会严重降低信号传输的准确性。对于这种现象,亟需进行毫米波线性化技术研究,用来补偿信号的失真,减小由于信号失真对通信系统带来的影响。本文以毫米波电路为基础,从系统的非线性现象和模拟预失真原理出发,对Q波段线性化驱动模块进行了设计研究。整个模块以肖特基二极管作为核心器件,采用预失真原理进行设计,可以针对不同行波管功率放大器的非线性特性进行调节,完成特定TWTA的线性化需求。模块测试结果幅度扩张大于4d B,相位扩张大于55°,输入动态范围30d B,并且输入输出均可在一定范围内调节,保证了整个线性化TWTA输入功率的匹配以及线性化驱动模块为TWTA提供足够的驱动能力。实际应用中,该模块的相位扩张过大,会造成对TWTA的过度补偿,因此从带宽及可调性的角度对预失真器进行了改进,设计了宽带电路结构,增加了可调参量。仿真及实测结果表明,各结构带宽相比之前有所增加,相位扩张量最小可以达到14°。以WR19标准波导作为输入、输出端口,设计了一款波导、微带结合的U波模拟预失真器。测试结果表明,在47.2~51.4GHz的带宽内,预失真器的幅度扩张最小可以达到3d B,最大能达到7.2d B,相位扩张最小20°,最大可以达到75°。并结合可调增益放大模块,进行了整体线性化驱动模块的研制及测试,使得该模块的输入输出功率都在一定范围内具有可调功能。整体模块的性能:在指标频带内,幅度扩张最小可以达到4.8d B,最大能达到15.4d B,相位扩张最小123°,最大可以达到172°。具有与TWTA的级联测试能力。
其他文献
5G通信是目前最前沿的通信技术,5G频段中的Sub-6GHz采用多天线MIMO技术,这一关键技术会带来通道数激增,因此需要大量的滤波器集成于天线内部,这就要求滤波器具有低插损、低成本、重量轻,高抑制等特点。相较于金属波导滤波器,由高介电常数的陶瓷材料所构成的新型介质滤波器,它没有外部的腔体,尺寸小,温度稳定性好,Q值高,生产成本低,在5G基站射频模块中有很大应用前景。本文主要研究中心频率为3.5G
近场波束控制技术可以对天线阵列的发射能量聚焦目标进行调整,在微波生物医学热疗、无线电力传输、RFID和遥感等领域已经得到广泛的运用。当天线阵列工作于辐射近场区时,在研究的过程中便不能采用远场假设,此时需要针对近场场景建模,进行近场天线阵列的研究和仿真。为了进一步提高近场天线阵列的性能,实现近场聚焦距离下的低旁瓣波束、赋形波束等特殊形状的波束,通常以增加天线阵元数量的方式来提高设计自由度,对阵列辐射
精神分裂症是在临床中较为常见的一种慢性的大脑认知异常疾病,常伴有以幻觉妄想为主的阳性症状和以认知损伤为主的阴性症状。虽然以往的研究从行为、生理、心理等多个层面对其病理生理机制展开了大量研究,但是迄今为止,其具体发病机制仍不明确。临床上对患者的诊断也主要依赖于医师的主观判断,目前仍然没有建立关于此类病症的可靠生物学标记物的共识。近年来,无创的磁共振成像技术作为研究大脑的任务和静息活动规律的有力工具,
非协作通信领域下信号检测识别对于无线电频谱管理、军事领域信息获取等方面有着重要的意义。而多载波信号中正交频分复用(OFDM)技术作为应用较为广泛的信号,其非协作领域的高效检测意义非凡。本文以检测OFDM信号为研究重点,通过对OFDM信号的特性进行研究,旨在提升低信噪比情况下多载波信号的检测性能,主要研究的内容有以下几点:1.研究了基于统计特性的多载波信号检测算法。在非协作通信领域中用于信号检测的高
本论文研究含平衡流形的系统的正规形理论,并对一些与平衡流形相关的非光滑系统进行应用研究。平衡流形是向量场中由平衡点构成的流形。含平衡流形的系统是一种较为退化的动力系统,近年来在生物、电力市场等领域的建模中都出现了这类系统。与孤立的平衡点不同,系统在平衡流形附近的轨道性质一般更加复杂,比如平衡流形上不同点的稳定性可能发生变化,从而导致无参数分岔。无参数分岔是一般含参数问题的非平凡推广,并且有着重要的
嗜水气单胞菌(Aeromonas hydrophila)常导致鱼虾等水生生物患病,这不仅给沿海地区的经济造成损失,且制约水产养殖业的长久可持续发展。A.hydrophila的致病性是复杂、多因素的,主要通过产生和分泌相关毒力因子导致宿主患病。其中,溶血素基因(ahh1)在A.hydrophila感染宿主过程中起重要作用,阐释其功能及作用机理对于病害防治及疫苗开发具有现实意义。本课题首先通过原核表达
随机性是现实世界中最基本的客观不确定性,而概率论是用来处理随机现象的数学工具.随着人们对不确定现象了解的日益深入,一些学者开始挑战概率测度的可列可加性,先后提出了容度、模糊测度、可能性测度等完全非可加测度.完全非可加测度在否定可加性的同时,也否定了自对偶性,从而违背了数学科学中最基本的法则矛盾律和排中律.为了解决这一问题,Liu提出一类具有规范性、单调性、自对偶性、可列次可加性的部分可加的不确定测
睡眠在中枢神经系统(CNS)稳态的维持以及记忆和认知功能的发挥中必不可缺。但随着科学技术的进步,生活和精神压力的增加导致睡眠剥夺越来越成为一种普遍的社会现象。正如我们所了解的,睡眠剥夺会导致记忆功能受损,但有关内在机制的研究相对缺乏。记忆的形成与巩固需要形成新的突触或者消除弱突触以增强特定功能突触的活性。在中枢神经系统中,小胶质细胞为重要免疫细胞,是调控大脑发育与稳态的关键细胞。睡眠过程中,小胶质
本文的主要内容是用Hall代数的方法研究量子群的晶体基中对应于exceptional模的元素与构造仿射型包络代数U(n+)的整基。主要有以下两个方面的结果:第一,对任意有限维遗传代数A,其Hall代数的合成子代数同构于量子群的正部分Uv+。我们考虑exceptional A-模Vλ,即Vλ满足ExtA~1(Vλ,Vλ) = 0。Vλ在Hall代数中的对应元素记为uλ,Vλ的维数向量设为α。我们知道
复杂腔体结构以及含腔体目标的散射特性求解一直以来都是计算电磁学(CEM)中最重要,同时也是极具挑战性的课题之一。腔体结构是飞机上散射较强的部分,开展腔体类目标电磁散射研究,对理解腔体内电磁波传播机理、腔体外形结构设计及腔体类隐身材料性能都具有重要价值。电磁积分方程方法作为一种高效的全波数值方法,只需对目标表面或者目标自身区域进行几何离散,具有剖分网格灵活,计算结果精确等优势。然而,积分方程方法用于