基于深度特征挖掘的小样本学习方法研究

来源 :合肥工业大学 | 被引量 : 0次 | 上传用户:ggg321
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着人工智能的兴起,深度学习发展迅速。然而传统深度学习在实现时需要大量的标注样本进行深度模型的训练,成本高昂。因此,如何让深度模型减少对训练样本数量的依赖,即实现小样本学习成为了研究的关键。基于度量学习的小样本学习方法简单高效,其主要通过将样本映射到特征空间中再进行距离度量实现。本文基于度量学习方法,首先通过多尺度特征提取网络和图神经网络提高基础方法挖掘样本特征信息的能力,再优化传统类表达特征计算过程,从而改进度量学习。主要研究内容如下:1.针对传统基于度量学习的小样本学习方法,使用单一尺度特征提取器,造成特征信息片面化的问题,提出多尺度类特征网络。首先设计基于卷积块与残差块的多尺度特征提取网络,获取抽象与细节特征都较丰富的多尺度融合特征。其次提出特征贡献度,通过预估样本与伪类表达特征的距离,赋予样本权重计算类表达特征,优化其在特征空间的位置,提高距离度量分类结果。2.针对传统基于度量学习方法在分类一个任务时,对样本仅使用自身标签,而忽略样本之间的标签类别关联,造成信息挖掘不充分问题,提出了深度掩码图特征网络,在特征提取后使用图神经网络进一步挖掘样本的深度特征信息。深度掩码图特征网络使用元学习器自适应生成边的掩码,指导图有选择地更新。此外,在分类时加入互斥损失,从优化网络训练的角度,促使不同类样本簇相互远离,进一步优化类表达特征计算,提升方法分类性能。在多个常用的公开图像分类数据集上验证了本文方法能有效挖掘特征信息,同时特征可视化结果表明本文方法优化特征在嵌入空间的分布,提高度量学习分类效果。
其他文献
高光谱图像具有很高的光谱覆盖范围,可以准确地识别地物信息,但是拥有丰富光谱信息的同时高光谱图像空间分辨率普遍较低,因此高光谱与多光谱图像融合成为了遥感图像处理的重要课题之一。目前深度学习在图像领域获得了不错的成果,在遥感图像融合问题上同样表现优异。然而,现有算法忽略了两个问题:1)原始高光谱图像和多光谱图像之间存在巨大尺度差距,2)对光谱信息重建的关注不足。本文对于上述问题提出了针对性的解决方案,
显著性目标检测的目的是从某个给定的场景中提取出最吸引人注意的物体,该研究不仅在图像分割、目标识别等领域有所贡献,还被应用于无人驾驶、目标追踪等高科技领域。目前提出的显著性检测算法大多基于2维RGB图像和3维RGBD图像。随着4D光场相机的蓬勃发展,显著性目标检测开始向4D空间拓展。早期的光场显著性检测算法主要依赖人工提取特征信息,后期随着深度学习网络的发展,研究者们开始尝试搭建深层神经网络检测光场
当前,深度学习技术迅速发展,在计算机视觉、自然语言处理、语音识别等领域取得了举世瞩目的成果,但是大多数深度学习模型的训练依赖于大量标注样本。在现实情景中,某些样本的标注非常困难,而较少的样本也不足以表达某个类别的特征分布。然而,人类可以在见过极少的样本后快速地识别出属于该类别的新样本,研究者们从人类这种快速学习的能力中受到启发提出了小样本学习问题,其目的就是要学习一个具有良好泛化性能的模型,能够在
随着计算机信息技术的发展,智能安防领域的相关技术也得到了很大的进步。在智能监控系统中,行人再识别算法受到广大科研人员和科研机构的密切关注。但是,行人再识别技术在现实场景应用的过程中面临着一些挑战。虽然基于有监督学习的行人再识别技术得到了巨大的提升,但是使用有监督学习的方法进行模型训练需要大量已标记的数据,这增加了人工成本和时间成本。由于在现实场景中直接获得的行人图像是无标签的,所以直接基于无标签数
随着计算机视觉领域的相关技术的快速发展,人体解析在该领域中的地位也显得愈加重要,其具体任务是为图像中的人物进行逐像素的分类标注,将图像中的人体划分为带有语义信息的不同区域,又被称为服装解析。本文研究了利用基于特征融合的方法处理人体解析任务,首先提出了多尺度特征融合网络MFBNet,创新性地为其引入了上下文嵌入模块,用于捕获丰富的上下文信息从而提高解析精度;另外,为了针对性地提高模型在单人解析任务上
随着互联网与智能移动设备的普及,各类应用平台的层出不穷引发了数据规模的爆炸式增长,在海量的产品中实现精准投放成为互联网平台获益的关键。提前对用户下一次的点击行为进行预测就显得尤为重要,点击率预测任务因其可用于评估用户点击产品的可能性的特点,目前已广泛部署在许多在线推荐和广告平台中。针对点击率数据特征学习的模型可分为两类:以学习线性特征组合进行预测的浅层模型(例如,梯度提升树),以及通过对复杂的稀疏
近年来,随着社会流动性增加,智能安防逐渐引起国内外科研学者的重视,而跨模态行人再识别系统是智能安防领域的重要研究课题,国内外科研人员都开展了相关研究,本文在现有成果的基础上进行了优化与改进,旨在深入解决跨模态行人再识别系统的难点与挑战。基于深度学习的跨模态行人再识别系统由两个重要分支组成,分别是行人检测网络和跨模态行人再识别网络,因此,本文的研究课题主要为行人检测和跨模态行人再识别两个方面。本文的
高光谱图像分类是高光谱图像分析中的一个重要研究领域。在考虑高光谱图像的光谱信息和空间信息的基础上,许多优秀的算法被提出应用于分类之中。遥感高光谱图像中大量的混合像元使可分性减弱。当前的高光谱分类都是单标签分类,从标签的角度看,用单标签来标记混合像元内的多种地物是不合适的。从分类的角度看,混合会让光谱特征空间的类内差异变大,类间差异变小,导致最终的分类结果变差。针对混合像元的存在,本文将多标签学习的
作为图像理解和计算机视觉任务中的热门课题之一,目标检测已经成为解决行人检测、人脸识别、路径跟踪等复杂任务的基础。其主要目的是确定自然图像中是否存在预定义的物体实例,并返回物体实例的空间位置和类别。随着深度学习技术的普及,基于深度学习的目标检测框架相较于传统方法获得了更好的检测性能。由于不断出现的复杂任务场景,现阶段对于检测器的实时性的要求也越来越高。单阶段目标检测器以其较少的参数和较高的推理速度,
行人再识别的目的是在智能视频监控系统非重叠摄像机视角下对同一行人进行识别匹配。该技术在实际生活中的很多领域有着越来越多的应用,包括公共安全、行为分析和交通流分析等。受光照变化、背景复杂、行人姿态变化和行人被遮挡的影响,行人再识别技术面临着巨大的挑战,成为计算机视觉领域的研究热点和难点。为了能更好地解决这些问题,本文引入了多种注意力机制,重点对于视频行人再识别技术进行了深入研究,有效地提升视频行人再