SnS2掺杂结构设计及其储Li/Na机理的第一性原理研究

来源 :湘潭大学 | 被引量 : 0次 | 上传用户:q5108947
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
SnS2作为一种具有广阔应用前景的电池负极材料,其具有层间距较大、比容量高、绿色无污染等优点而引起研究者们广泛关注。然而其导电性差的缺点导致SnS2的电化学性能有待进一步提高。离子掺杂一种改善其电化学性能的有效方法,但存在掺杂元素选择的随机性和复杂性问题,尚缺乏系统的理论指导。因此,在本文中,我们采用第一性原理方法系统地研究了不同金属(Ni、Y和La)离子掺杂SnS2的机理并探讨了其储Li/Na机制,从而为设计新一代锂/钠离子电池负极材料提供系统的理论指导,其研究内容和具体结论如下:(1)Ni掺杂SnS2及其储Li/Na机理研究:首先,根据SnS2的结构对称性建立Ni掺杂SnS2的三种结构模型:Ni取代SnS2晶格中的Sn原子(Ni Sn)、Ni位于四面体间隙(Ni Th)和Ni位于八面体间隙(Ni Oh)。通过比较总能和层间距发现Ni最容易占据SnS2层间的四面体间隙;Ni0.11SnS2为最优掺杂结构,其层间距为3.13?。Li和Na在Ni0.11SnS2层间的扩散势垒分别为0.428 eV和0.607 eV,这均小于Li和Na在SnS2层间的扩散势垒(Li的扩散势垒0.547 eV;Na的扩散势垒为0.656 eV)。同时Ni0.11SnS2具有金属特征;此外,Ni0.11SnS2在储Li/Na过程时比SnS2具有更稳定的放电电压平台。(2)Y掺杂SnS2及其储Li/Na机理研究:Y掺杂SnS2体系的最优结构为Y0.11SnS2,此时Y占据在SnS2层间的八面体间隙(YOh),其层间距为3.17?。其次,Li在Y0.11SnS2层间的扩散势垒为0.438 eV,这小于Li在SnS2层间的扩散势垒(0.547 eV);因此,与SnS2比较,Li在Y0.11SnS2层间具有更快的扩散速率;此外,当Y0.11SnS2作为锂离子电池负极材料时,其循环稳定性优于SnS2。(3)La掺杂SnS2及其储Li/Na机理研究:首先,考虑了多种La掺杂SnS2结构,并计算了其总能。计算结果表明:La最容易占据其八面体间隙(La Oh);其次,La0.11SnS2具有较大的层间距(3.52?),Li和Na在La0.11SnS2层间的扩散势垒分别为0.291 eV和0.567 eV,这显著低于其在SnS2层间的扩散势垒(Li的扩散势垒0.547 eV;Na的扩散势垒为0.656 eV)。此外,La0.11SnS2在储Li/Na过程中具有稳定的放电电压平台。
其他文献
目前我国能源短缺、消费结构单一,石油进口依赖较大,改变目前能源消费结构,向能源多元化和可再生能源发展是国家能源安全的必然选择,生物质能源的规模化开发已成为我国乃至世界科技界研究的热点之一。钙钛矿氧化物在还原过程中能产生高度分散且稳定的金属中心和亲氧中心,满足生物质油加氢脱氧的要求,同时增大钙钛矿氧化物的孔径结构,能增大活性表面积,降低反应过程的传质阻力和减少积碳前驱物在催化剂表面的停留,抑制催化剂
氧化铪基铁电存储器凭借其与现代半导体工艺的完美兼容、环保无污染、铁电薄膜物理厚度小、功耗低等优异特性,近年来成为科研界和产业界的最受关注的新型存储器之一。氧化铪基铁电薄膜的制备工艺决定其铁电性能,是铁电存储器研制的基础和关键。本论文通过氧化铪基铁电薄膜原子层沉积工艺参数优化和表面低能氧离子后处理两种途径,探索了薄膜中氧空位含量对锆掺杂氧化铪铁电薄膜性能的影响,制备出了性能优良的氧化铪基铁电薄膜。主
锂离子电池是当今占据市场份额最大的储能器件,随着能源转型和升级的趋势越来越强烈,现有的锂离子电池技术已难以满足大众对高性能电池的需求。作为锂离子电池的核心组件之一,隔膜性能的优劣是影响锂电池性能的关键因素。目前聚烯烃材质隔膜占据市场的大部分份额,这些年在锂电池领域的应用暴露出以下缺点:(1)孔隙率低,电解液浸润性差;(2)对高温敏感,热收缩性严重,严重影响锂离子电池的使用安全。因此,开发高性能锂离
氧化铪(HfO2)基铁电材料作为一种新型铁电材料,因为其强的尺寸微缩能力以及与CMOS工艺高度兼容的特性被认为是铁电材料未来发展的方向之一。以这种类型的铁电材料为基础制备而成的铁电存储器被认为能够克服传统铁电存储器保持性能不足以及尺寸微缩能力差的劣势,推动铁电存储器产业的革命性发展。然而在现有的研究中我们发现HfO2基铁电存储器仍然存在唤醒效应和疲劳失效等问题,这些问题严重影响HfO2基铁电存储器
去氢表雄酮(Dehydroepiandrosterone,DHEA)是人体血液中最丰富的甾醇物质,早在20世纪,DHEA就被誉为“激素之母”。DHEA不仅参与多种甾体激素的合成,还具有抗癌、治疗肥胖、防治糖尿病、调节免疫力、保护神经、改善卵巢功能等多种生理功效。DHEA普遍存在于动物组织、器官中,外源DHEA获取方式以人工合成为主,常用合成方法需经多步化学反应,复杂且不易控制。甘薯是已知少数几种天
水是地球上最重要的资源,由于重金属、染料、杀虫剂等不同种类污染物的存在令其使用价值正在减少甚至丧失。近年来,水中痕量的染料被广泛报道对人类健康具有致癌作用,而且印染行业产生的有毒废水流入环境每年可造成10~5吨的水资源污染且修复成本极高,如何高效处理染料废水已经成为目前水处理领域亟待解决的关键问题。已报道的处理方法包括化学处理法、生物法和吸附法等,其中吸附法操作方法简单且高效无污染,是去除染料废水
双酚F是一种重要的化工原料,以其为原料制备的树脂在化学特性和物理特性均优越于双酚A,然而双酚F具有三种异构体,其配比会影响产品的物理性能,且异构体分离困难。为响应绿色化发展要求,探究一种高效、环保的分离技术具有重要意义。本文以铝基金属有机骨架材料为吸附剂探究其对双酚F异构体的吸附性能。主要研究如下:1.采用回流法制备了MIL-68(Al)-a、MIL-68(Al)-c,水热法制备了MIL-68(A
发展具有低成本、安全可靠的二次电池是目前研究的热点方向,也是为了解决能源问题,实现能源高效利用的重要环节之一。钠空气电池具有成本低、安全性能好和稳定性强的优势引起学者们的广泛关注,但是钠空气电池的正极中存在水分和CO2,随着反应的进行会引起一系列副反应从而导致绝缘物质(例如碱金属氢氧化物和碱金属碳酸盐)形成,使电池的电化学性能恶化,甚至导致电池失效。发展纯氧气的钠电池(Na-O2)成为必然趋势,目
全球环境气候的恶劣变化是一种对生态文明极具威胁的挑战,及时有效的预测气候急剧变化对植被生长的影响,对防治全球灾害性事件有着重大意义。本文使用的数据为中国2000年至2019年的地面日值气温与日值降水数据、MODIS中增强型植被指数EVI(Enhanced Vegetation Index)时间序列数据和中国地形高程DEM(Digital Elevation Model)数据。首先对中国20年的气温
自支撑薄膜制备技术是指通过化学刻蚀或物理刻蚀的方式使薄膜自衬底上剥离从而独立存在的技术。这项技术的出现推动了金属氧化物单晶薄膜的发展,经处理得到的自支撑金属氧化物单晶薄膜能够在保持外延薄膜高性能的同时自由转移到不同衬底上,因此可以很好地兼容于硅基半导体工艺,或应用于柔性器件。杨氏模量是器件设计时选择材料所必须考虑的重要参数,也是研究自支撑金属氧化物薄膜物理性能的应变调控所需要的基本物理量,但传统的