基于双凹形谐振腔的金属半导体纳米激光器研究

来源 :南京理工大学 | 被引量 : 0次 | 上传用户:haose1989
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
亚波长以及纳米级别的超小型化激光器研究对于生物医学领域的探测及成像有许多潜在应用,超小型化激光器也是激光技术及光子集成电路的重要课题,对于未来通信技术发展具有基础作用。本文在前人设计的金属半导体激光器基础上,对谐振腔结构进行全新设计,提出双凹型谐振腔激光器的设计思路,包括具有高斯光束形状的谐振腔结构,以及具有侧壁独立可调的双凹型谐振腔结构。高斯型谐振腔具有圆柱形反射端面和高斯光束波前分布形状弯曲侧壁。圆柱形反射端面使谐振模式的光场能量集中于腔中心,远离金属侧壁减小损耗。弯曲侧壁结构减小垂直金属侧壁的电场分量,减小表面等离激元模式并减小金属损耗。通过理论研究及数值仿真,理论证明了高斯型谐振腔相对传统矩形腔结构及胶囊型结构的优越性。例如,激发波长为1550 nm附近的高斯型结构,当谐振腔体积为0.423λ~3时,数值仿真证明了62.4?(32)的超小阈值电流,这对于金属半导体纳米激光器的结构设计提供了新机制和新方法。在高斯型谐振腔结构启发下,设计了更具一般性的双凹型谐振腔结构。双凹型谐振腔的侧壁形状是内凹曲线,本文研究了三类内凹曲线,均与圆柱形端面相互独立,这对于谐振腔设计灵活性有进一步提升。通过数值仿真理论上证明双凹型结构有效降低谐振腔的辐射损耗,提高谐振腔Q值。本文提出的两类谐振腔设计结构能够有效的提升激光器性能并同时缩小体积,为拓展超小型化激光器在生物医学领域的应用前景奠定了理论基础。
其他文献
微多普勒效应是指目标及其部件的微小运动对雷达回波产生频率调制的现象。微多普勒回波中可以提取出目标的物理参数以及运动特征,因此微多普勒特征提取成为雷达目标识别领域的重要研究内容。微多普勒效应获得国内外广泛关注,但其相关技术还有待改进和完善。本文针对基于时频分析的旋翼微多普勒特征提取方法,主要内容如下:(1)在推导典型微动微多普勒数学模型的基础上建立了飞行器旋翼的微多普勒回波模型,通过仿真分析验证了从
熔石英具有优异的光学性能、机械性能和化学性能,被广泛用于制备光纤探头、微陀螺等元器件的封装壳体。然而,熔石英表面润湿性差,导致封装温度高,降低了被封装器件的使用寿命。本文提出基于飞秒激光表面修饰的熔石英表面润湿性调控方法,通过调整熔石英表面形貌,提升其润湿性,降低封装温度,提升被封装器件的使用寿命。结合数值计算和试验分析手段,研究飞秒激光工艺参数对熔石英表面形貌的影响规律,阐明飞秒激光高速扫描下激
人体目标的成像及呼吸辨识在反恐救援、用户认证和健康监测等方面有着广泛的需求。目前,对于人体目标的成像主要包含光学成像,红外成像和雷达成像。其中光学成像无法全气候、全天时成像且会产生隐私问题,红外成像易受其他热源干扰从而影响成像效果,而雷达成像在反恐救援中由于无法识别人体目标的身份信息常导致人质目标的救援工作难以展开。因此,设计一个既可以定位人体目标又能对人体目标呼吸进行辨识的系统具有非常重要的现实
随着现代雷达工业的发展,雷达发射机种类越来越多,磁控管发射机便是其中一种。虽然它具有输出功率大、效率高、尺寸小、工作电压低、重量轻、成本低等优点,但是也有着很严重的不足之处,即频率稳定度和相位稳定度差,倘若不做处理,会对后端的信号处理有很大的影响。本文针对雷达磁控管发射机频率稳定度差的现象进行了研究,采用了一种基于相位推算法的高精度瞬时测频方法。此外,还对如何快速实现磁控管发射机的跳频功能做了一定
引信系统和卫星导航系统的发展也带动了终端天线的发展。在引信系统中,天线需要能够在较大范围内探测、识别目标以便准确获取目标信息。宽波束天线具有较宽的波束覆盖范围,能够较好地应用于引信系统;卫星导航系统中,宽波束圆极化天线可以获取广泛且准确的信息,从而提高通信质量。本文旨在研究以下四种宽波束天线:工作在10 GHz的宽波束开口波导天线,工作在8.1 GHz的宽波束波导缝隙天线,工作在8.1GHz的宽波
相位解包算法是干涉测量中的关键技术,目前被广泛应用于光干涉测量、合成孔径雷达、反射测量等领域。当前对相位解包算法的研究众多,各类算法在不同噪声条件下有不同的性能表现,因而具有不同的适应能力。一般地讲,整体性能较好的算法具有较高的实现复杂度和成本,会成为实时干涉系统中的带宽瓶颈。本论文研究了一种基于无迹卡尔曼滤波器的相位解包算法,重点研究了基于现场可编程门阵列(Field Programmable
与可见光、红外相比,毫米波受天气条件制约小,探测目标精度高,穿透性强,具有全天时全天候的工作能力,因此在检测、识别、侦查、跟踪等方面均有广泛的关注。不同目标的毫米波辐射特性存在明显差异,研究典型地物背景和金属的辐射特性具有较大的应用前景。在隐蔽探测方面,毫米波被动探测系统由于其隐蔽性好,相对体积小成本低,具有独特的优势,未来在军事隐藏与探测、特殊情况下的隐蔽探测或监控等方面也有较大的应用潜力,不同
平直度是表征钢板表面与绝对水平之间差别大小的指标,用以反映出钢板的翘曲程度。准确地获取钢板的平直度信息,并实时反馈给钢板板形控制系统,对高质量钢板的生产具有重要意义。本文采用基于激光三角法的三点测量技术方案,以XC7A35T FPGA为主控制和处理芯片,对钢板平直度测量系统展开研究。论文首先对钢板平直度测量的国内外研究现状,以及对激光三角法、激光莫尔条纹法和激光截光法等3种典型的平直度测量方法进行
正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术因其具有频谱利用率高、抗干扰能力强和抗多径效应强等优点而成为无线通信领域的研究热点。但是OFDM信号也存在峰均功率比(Peak to Average Power Ratio,PAPR)较高的问题,本文正是围绕着如何降低OFDM信号峰均比问题展开研究。首先,详细介绍了OFDM技术的理论基
T/R组件在相控阵雷达中占据重要地位,决定了相控阵雷达中多种功能的实现和各项指标。本文从T/R组件的关键技术着手,在混合微波多层板技术和多芯片组装技术(MCM)的基础上,利用微波单片集成电路(MMIC)进行电路设计,完成Ku波段16通路小型化相控阵T/R组件的设计。主要研究内容如下:首先,本文对应用于小型化相控阵T/R组件的国内外发展动态展开调研,并且介绍了传输线理论、多层板技术、工艺实现的方式,