【摘 要】
:
仪表作为数据显示和监控的重要工具,广泛应用于工业领域,特别是变电站等高压、高温、高辐射的环境中。变电站中存在大量指针式仪表和数显式仪表,人工读取仪表示数存在工作强度大、成本高、效率低、误差大等缺点,迫切需要研究一种智能无人值守的仪表示数识别方法。仪表图像处理存在仪表分类、表盘和指针区域检测困难、仪表图像预处理繁琐等问题,传统的仪表识别方法不能解决这些问题,本文基于深度学习目标检测方法进行仪表示数图
论文部分内容阅读
仪表作为数据显示和监控的重要工具,广泛应用于工业领域,特别是变电站等高压、高温、高辐射的环境中。变电站中存在大量指针式仪表和数显式仪表,人工读取仪表示数存在工作强度大、成本高、效率低、误差大等缺点,迫切需要研究一种智能无人值守的仪表示数识别方法。仪表图像处理存在仪表分类、表盘和指针区域检测困难、仪表图像预处理繁琐等问题,传统的仪表识别方法不能解决这些问题,本文基于深度学习目标检测方法进行仪表示数图像识别,主要研究内容如下:研究基于Faster R-CNN的仪表盘定位方法,针对仪表图像中仪表盘和指针区域占比小问题,本文提出一种改进的Faster R-CNN深度学习目标检测方法,将Faster R-CNN中的区域建议网络(Region Proposal Networks,RPN)与特征金字塔(Feature Pyramid Networks,FPN)网络进行融合,提高了仪表盘和指针区域定位准确度。针对平衡仪表图像正负样本问题,在RPN网络中引入Focal Loss样本平衡损失函数进行样本训练。实验结果表明,改进的方法漏检率与传统算法相比提高了8.9%,误检率与传统算法相比提高了5.1%。研究基于特征金字塔(FPN)的指针式仪表示数识别方法,为提高指针区域检测准确度,本文提出一种基于改进的FPN图像分割方法,在FPN顶层添加反卷积层,对卷积特征图复用,能够实现准确高效的分割指针区域。此外针对仪表图像倾斜问题,使用透视变换校准图像。最后为了提高识别准确度,使用最小二乘法进行指针区域拟合,计算指针的偏转角度,获得指针式仪表示数。实验表明,基于改进FPN方法比基于Hough变换的仪表示数识别方法精确率提升2.38%,召回率提升5.96%,总时间提升21ms。研究基于连接文本提议网络(Connectionist Text Proposal Network,CTPN)的数显式仪表示数识别方法。传统字符检测方法易受图像预处理和字符分割效果影响,本文基于CTPN进行字符区域定位,再经过稠密连接网络(Dense Net)识别示数,该算法避免了图像预处理和字符分割等操作,简化了识别流程。实验表明,本文算法提高了数显式仪表示数识别的准确率和可靠性。将本文的研究内容应用到仪表示数图像识别中,实现了仪表盘定位、指针式仪表示数识别和数显式仪表示数识别。实验结果表明,算法相较于传统算法具有更高的读数准确率、更强的普适性和泛化能力。
其他文献
植筋加固是运用最为广泛的加固方法之一。在实际工程中,对于不满足承载力要求的梁、柱等构件需要进行增大截面加固,对于需要增大截面后植筋的复合混凝土基体后植筋结构,不同的植筋深度、植筋钢筋埋入下部基层和下部基层的长度之比,会对植筋试件的承载力造成一定的影响。目前大多数是对关于单基体植筋粘结锚固的破坏模式和极限承载力等方面的研究,对复合混凝土基体后植筋结构的粘结锚固性能研究较少,本文从以下三个方面展开了研
传统的单光眼镜已经不能满足老视患者在舒适度、有效视野、清晰度等方面日益增长的需求。由于渐进多焦点眼用镜片(PAL)能够提供远、中、近清晰的视野,受到越来越多老视患者的青睐。视远区和视近区的大小与子午线的设计、轮廓线的设计、渐进面矢高方程有关。因此,本文提出一种渐进面矢高构建方法,该方法使用具有曲率调整元的环曲面方程来设计渐进多焦点眼用镜片,以减少镜片的像散并扩大视近区的有效视力范围。具体内容如下:
在城市污水处理主流工艺中回收磷是污水处理技术发展的必然趋势,也是国际环境工程界的热点研究领域。相比传统EBPR工艺,生物膜磷回收技术的工艺流程更简化、回收率更高,但已有研究均需在厌氧段额外投加碳源(COD在200-1600mg/L不等)来获取高磷回收液。我国城市污水中COD浓度普遍在200-300mg/L范围内,本研究将模拟城市污水水质,构建一个新的运行模式,来水先进行厌氧段,利用其碳源释磷,再经
众所周知,凭借优异的性能而著称的聚氨酯(Polyurethane,简称PU)弹性体材料,在电子,医药和工程等许多领域具有突出的性能和不可或缺的应用。然而,在聚氨酯材料的实际应用中,由于受到外部的挤压弯折与刮擦磨损而使材料内部或外部产生微小裂缝,而微裂缝的产生往往会导致聚氨酯材料失效。因此,为了节约有限的资源,实现资源的最大利用,研究自修复聚氨酯具有非常重要的意义。自修复技术是一种受皮肤启发,通过模
由于钢管混凝土CFST结构具有承载力高、塑性和韧性好、制作和施工方便的特点,因而广泛应用于超高、大空间等结构。哑铃形是工程中常有的截面形式,并广泛的用于桥梁结构。哑铃形CFST平面内承载力较高,其平面外的稳定问题比较突出。目前对钢管混凝土结构的研究主要集中在轴压、偏压和纯弯的受力状态,很少有弯扭屈曲的研究。为了使哑铃形钢管混凝土构件在实际工程中得到方便的计算和使用,本文在张文福教授“板-梁理论”的
由于装配式结构在环境保护、质量和安全控制以及建筑方案优化等方面的优势,近年来在建筑领域得到了广泛的应用。采用单边螺栓连接的钢管混凝土柱装配式框架,不仅具有钢管混凝土柱承载力高、抗震性能好、抗火性能好等优点,还具有节点构造简单、施工快捷等特点。目前,对于钢管混凝土柱单边螺栓节点及框架抗震性能已有一定的研究,然而对其在高温下力学性能和破坏机理还鲜有报导。本文进行了4榀ISO834标准升温条件下单边螺栓
作为典型抗生素的一种,氯霉素(CAP)由于其不良的生物效应和诱导抗性基因的潜力,引起了公众的关注。本论文针对氯霉素的降解与转化,分别采用亚临界水热反应和过硫酸盐高级氧化技术,探讨两种体系下CAP的去除效果和降解机理。针对高浓度制药废水中的CAP采用亚临界水热反应去除,针对低浓度制药废水中的CAP采用钴/铁双掺杂生物炭催化过硫酸盐去除。研究成果分别如下:(1)亚临界水热反应的研究表明,CAP在亚临界
手机等移动产品以及纯电动汽车的出现导致了对大容量储能器件需求的增加,而锂离子电池作为新型储能器件备受关注。石墨由于低成本及高稳定性,是目前锂离子电池中使用最为广泛的负极材料,然而石墨较低的理论比容量(~375m Ah·g-1)限制了其进一步的发展。因此,寻找新型的负极材料是发展锂离子电池中至关重要的一个环节。在众多的材料中,Si及其氧化物(SiOx)因为极高的理论比容量被认为是最有发展潜力的锂离子
随着工业发展的突飞猛进,水体镉污染现象日益严峻。生物炭和微生物吸附在含镉废水处理中有着广泛研究,但仍然存在一定的应用缺陷。研究表明,利用生物炭-微生物协同体系处理含镉废水可以弥补单一体系处理时的不足。然而,目前有关协同体系的研究还相对较少,缺乏对体系中的作用机理展开深入研究。因此,本文考查了三种生物炭的吸附特性,进而在此基础上、对比其与枯草芽孢杆菌联用形成的协同体系对含镉废水的镉去除能力差异,并深
热激活延迟荧光(TADF)材料作为有机发光二极管(OLEDs)的第三代发光材料,与第一代传统荧光和第二代磷光材料相比,具有器件效率高、成本低和环保等优点而备受关注。目前,红光TADF OLEDs的发展远不如蓝光和绿光TADF OLEDs,并且红光TADF材料也比较稀少。因此,设计合成新颖的红光TADF材料是本研究领域的重要课题之一。本论文设计合成了一系列以二苯并[a,c]吩嗪(DPPZ)为受体的结