论文部分内容阅读
随着芯片封装技术不断向着多引线、细间距及高效封装方向发展,高端引线键合机对其高加速度运动系统的响应能力、定位精度、定位时间等伺服性能提出了更高的要求,往往要求运动平台在几毫秒或十几毫秒内快速、平稳、精确地运行到给定的目标位置。然而,在频繁快速启停的高加速度短行程点到点运动过程中,外部干扰、机械共振模态及系统本身电气、机械部分的非线性特征不同程度地影响着系统的伺服性能,极易引起系统的残余振动。这不仅降低了高加速度直线伺服系统的定位精度,而且延长了系统的定位时间,给高性能运动控制系统的设计与开发带来了极大的挑战。本论文结合国家科技重大专项“极大规模集成电路制造装备及成套工艺”项目“封装设备关键部件与核心技术”,对高端引线键合机的关键部件和核心技术——专用多轴控制硬件和快速高精度定位技术展开深入的研究。首先,建立高加速度运动系统的仿真研究平台,定量分析外部干扰和机械共振模态对高加速度直线伺服系统性能的影响及探讨影响高加速度直线伺服系统快速高精度定位的关键技术。之后,在充分考虑移植载体(DSP芯片)性能的前提下,依据探索出的关键技术分别从模型参数辨识、点位轨迹规划和高性能控制算法三个方面展开深入的研究,并将相关的核心技术移植到自行设计开发的专用嵌入式运动控制器中。本论文的研究内容和研究成果如下:1.为有效分析机械共振模态对高加速度直线伺服系统性能的影响,本文提出了采用直线电机电磁模型、平台动力学模型及高频共振模型进行系统建模的方法。建立高加速度运动系统的仿真研究平台,并定量分析外部干扰和机械共振模态对高加速度直线伺服系统性能的影响及探讨影响高加速度直线伺服系统快速高精度定位的关键技术。2.针对影响高加速度直线伺服系统快速高精度定位的模型参数辨识问题,在频域辨识方面,本文提出了基于速度(位置)反馈的标准继电器滤波整形频域辨识方法,有效解决了标准继电器频域辨识中的“主谐波近似”问题,使其输出方波更逼近于正弦波;在时域辨识方面,本文提出了基于位置信号反馈的标准继电器时域辨识方法,极大提高了模型参数的辨识精度,仿真表明模型参数的辨识误差均保持在0.05%内。3.针对高加速度运行下参考输入信号极易激起系统强烈振动及产生较高幅值的残余振动问题,本文借助Morlet小波变换分析出一条在固有频率处具有最小激励幅值的点位轨迹,半实物仿真系统上的实验结果表明相比“时间最优”的点位轨迹,在定位精度为±2.5μm的约束下,采用本文优化方法获取的点位轨迹作为参考输入时的定位时间缩短了近50%,减少为11.4 ms。4.为有效抑制内部干扰、外部干扰及高频噪声等因素对高加速度直线伺服系统快速高精度定位的影响,设计出一个基于干扰观测器的二自由度伺服控制方案,由基于极点配置的PD反馈控制单元、基于模型逆的前馈控制单元和力-位干扰观测器三部分组成。并针对实际应用过程中的“力-位干扰观测器低通滤波器的时间常数取值不能过低”问题,设计出一种有效抑制谐振峰值的低通滤波器。半实物仿真系统上的实验结果表明,在定位精度为±2.5μm的约束下,此方法可在12 ms内完成2.54 mm的典型运动。5.依据高端引线键合机运动控制系统的技术需求,开发了一种基于CPCI总线和“DSP+FPGA”架构方式的专用嵌入式运动控制器,并将本课题研究的快速高精度定位技术移植到此专用嵌入式运动控制硬件中。引线键合机平台上的实验结果表明,在定位精度为±2.5μm的约束下,本文研究的运动控制软硬件系统具有在12 ms至16 ms内完成2.54 mm典型运动的能力,可实现引线键合机高加速度运动系统的快速高精度定位。最后,在总结研究成果的基础上,本文提出一些值得研究与探索的问题,并对嵌入式运动控制器与快速高精度定位技术的后续研究工作进行了展望。