超声分子束和alpha粒子径向输运研究

来源 :中国科学技术大学 | 被引量 : 0次 | 上传用户:jtl666666
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
JET和TFTR托卡马克装置上的氘氚聚变反应在实验上验证了聚变反应的可行性,为建立自持燃烧的聚变装置做出了重要的尝试。正在建设的国际热核聚变实验堆将要实现的重要目标是氘氚聚变反应释放的能量大于加热消耗能量的5倍以上,中国聚变工程实验堆也将进行氘氚聚变反应,并验证建设商业示范聚变堆需要的技术和部件。燃烧等离子体物理对聚变堆设计和实现聚变反应的高效稳态运行至关重要。聚变装置的长时间稳态运行需要高效的加料和加热方式。超声分子束注入是主要的加料方式之一。聚变产生的alpha粒子输运和alpha对背景等离子体加热是燃烧等离子体物理研究的重点内容。本工作开发了一维多流体径向输运程序TPSMBI,用于研究超声分子束和alpha粒子径向输运特征。首先发展了一维超声分子束注入加料模型,模型包含了超声分子束注入过程中主要的物理过程:分子分解、原子电离、原子和离子之间的电荷交换等。基于超声分子束注入模型发展了 TPSMBI程序,并比较系统的研究了超声分子束注入通量、注入速度、注入气体温度和分子有效分解率对超声分子束注入过程的影响。随后在TPSMBI程序中加入alpha粒子微观湍流输运模型,研究alpha粒子微观湍流输运和alpha粒子对背景等离子体的加热。此外本文用NOVA程序研究了反剪切阿尔芬波的辐射阻尼问题,为后续研究反剪切位形下阿尔芬波不稳定性激发alpha粒子输运做准备。在超声分子束注入通量恒定并改变超声分子束注入速度时,超声分子束注入深度和等离子体密度径向剖面变化很小。维持超声分子束注入密度恒定并增加超声分子束注入速度可以增加超声分子束注入深度,缩短分子密度波前达到稳态的时间。降低超声分子束注入气体温度可以得到速度均一性更好的超声分子束。降低分子有效分解率可以显著地增加超声分子束注入深度,降低分子有效分解率可能是HL-2A托卡马克装置上包含团簇的低温超声分子束注入深度增加的原因。微观湍流输运引起的alpha粒子输运损失很小,大部分alpha粒子通过慢化过程变成氦灰。聚变刚开始到alpha粒子和氦灰密度达到稳态之前,alpha粒子密度增长速度逐渐降低,氦灰密度增长速度先升高后降低。alpha粒子在能量空间中的扩散降可以显著降低alpha粒子径向输运水平。微观湍流输运下alpha粒子通过库伦碰撞为背景等离子体提供的能量大于芯部背景等离子体的热输运损失的能量。反剪切阿尔芬波的辐射阻尼随环向模数的增加近似线性增长。高能粒子对辐射阻尼的贡献与高能粒子压强与等离子体总压强的比值密切相关,高能粒子对反剪切阿尔芬波的辐射阻尼的贡献与背景等离子体贡献在同一量级。高环向模数下反剪切阿尔芬波的辐射阻尼率远大于电子朗道阻尼率、离子朗道阻尼率和碰撞朗道阻尼率。本工作为研究燃烧等离子体物理发展了一维流体输运程序TPSMBI,并将其耦合到ONETWO程序中。可用于快速计算燃烧等离子体中的燃烧率、alpha粒子微观湍流输运和alpha粒子对背景等离子体加热等问题,为聚变堆的设计提供alpha粒子相关的数据支持。也可用于分析与超声分子束注入相关的实验数据,为优化超声分子束注入加料方式提供依据。
其他文献
互联网信息持续快速增长,以搜索引擎为代表的网络信息检索方式已不满足用户需求,推荐算法及系统在电商、娱乐、新闻等等行业已获得广泛关注和应用。近年来,在经典的基于内容的推荐算法、基于用户的协同过滤推荐算法和基于项目的协同过滤推荐算法的基础上,学者们提出了许多新的推荐算法,包括隐语义模型LFM(Latent Factor Model)、奇异值分解SVD(Singular Value Decomposit
随着人类工业化进程的发展,对于能源的需求也越来越大。传统化石能源的大量开采,造成的环境污染和能源短缺危机已经威胁到人类的健康和生存。发展二次电池是解决这些问题一种有效的方法。钠离子电池因其资源丰富,价格低廉,引起人们越来越多的关注。但是,钠离子的半径要远大于锂离子的半径,同时低功率密度和较差的循环性能使得开发高性能负极材料成为钠离子电池研究的重点。过渡金属氧化物可通过转化反应嵌入Na+,在过渡金属
锂离子电池的发展与迭代始终离不开负极材料的研究,目前在商业领域主要使用的负极活性材料是石墨类碳材料,无法避免的问题是理论容量较低(372 m Ah g-1),因此对于负极材料的研究亟待解决的问题是如何提升容量。红磷具有极高的理论比容量(2596 m Ah g-1),而且储量十分丰富,因此成为锂离子电池负极活性材料的理想选材之一。但是红磷导电性较差(≈10-12 S m-1)和循环过程中体积膨胀巨大
历史上德国在欧洲舞台一直扮演着关键性的角色。20世纪90年代初,冷战结束、德国重新统一,在这一历史背景之下,“文明力量”作为指导德国国家角色定位和外交政策走向的理论应运而生。该理论受到联邦德国政治文化——“克制文化”的影响,反映了德国对国际形势和外交政策的反思与探索,在理论上属于建构主义的角色分析模式。“文明力量”理论从诞生起就是专门用来描述德国外交政策的理论。本文首先对“文明力量”理论的产生、核
高能反向粒子流是强流离子源运行过程中不可避免的难题,而未来聚变反应需要更高功率和更长脉宽的中性束,因此高能反向粒子流是强流离子源大功率长脉冲运行的研究重点之一。本论文主要从理论出发,分析了高能反向粒子流产生的物理机制,并基于强流离子源实验平台开展高能反向粒子流的实验研究,基于诊断手段进行了高能反向粒子流的热沉积分布等分析,开展强流离子源反向粒子流的特性研究,继而开展抑制反向粒子流危害的优化方法研究
在过去的几十年,均相催化剂因其具有优良的催化活性、反应选择性、较少副反应,在化学中应用十分广泛,但均相催化剂存在难以从反应体系中分离,不易回收且催化剂难以实现循环利用,对环境造成较大威胁。为了解决均相催化剂对环境所造成的污染问题,化学工作者提出了负载型催化体系,制备出多相催化剂以减少此类问题。因此多相催化剂慢慢地被科学家所发现。多相催化剂与反应底物易分离,且具有回收循环再使用等众多优点,所以,将均
偏滤器靶板热负荷是关系到未来聚变堆稳态运行的一个重要问题。偏滤器靶板的热负荷由边界等离子体的行为决定。边界等离子体的数值模拟可以更好地理解边界等离子体行为,从而可以更加深入地研究偏滤器靶板热负荷问题。等离子体/中性粒子流体输运程序SOLPS是一个被广泛用于托卡马克边界等离子体(包括最外层闭合磁面之内的部分区域,刮削层(SOL)以及偏滤器区域)模拟的程序包。由于SOLPS中的粒子输运系数Dr,电子热
实现氚自持是中国聚变工程试验堆(CFETR)的核心目标之一,为了实现氚自持,CFETR的设计要求氚燃烧率大于3%,同时要确保1GW的聚变输出功率。本文应用OMFIT框架下的集成模拟工作流STEP评估了为同时达到上述两个目标,所需的弹丸加料参数。为此,需要基于弹丸消融和沉积物理模型准确计算弹丸的消融率和沉积剖面。本文基于Parks发展的最新消融模型给出的消融率定标率计算弹丸消融率,并对其进行了改进,
随着建筑顺应时代的发展趋势,各种建筑的新思想在不断涌现,而建筑设计的关注对象或参与对象始终脱离不开人这一因素,即建筑的使用者。回顾上个世纪的建筑思潮,以阿尔多·凡·艾克为首的结构主义的理念发展与实践者在荷兰涌现,他们关注战后城市的大量人口的居住问题,提出了一系列以人和关系的概念为主的建筑观念,从事物的整体与局部、人的个体与集体的双重身份出发,对建筑进行空间的探讨和实践。许多建筑师和学者从对荷兰结构
托卡马克是实现可控热核聚变最有希望的一种磁约束聚变装置。托卡马克等离子体平衡问题是聚变等离子体科学中最基本也是最重要的问题之一。托卡马克等离子体平衡不仅直接影响等离子体中各种物理过程如磁流体不稳定性、加热加料和输运等,也为运行模式选择和等离子体控制提供了依据。因此,它是所有托卡马克实验数据分析和理论模拟研究必不可少的物理量。托卡马克等离子体平衡一般通过结合实验诊断数据,然后求解Grad-Shafr