【摘 要】
:
连铸过程中,结晶器内的流场分布决定着初生凝壳生长、保护渣熔化、夹杂物上浮等冶金传输行为,研究考察结晶器内的流动与传输特点,对于连铸坯质量控制具有重要意义。由格子气自动机(Lattice Gas Automation,LGA)发展而来的格子玻尔兹曼方法(Lattice Boltzmann Method,LBM)是一种介观尺度的模拟方法,兼具宏观尺度连续模型和微观尺度分子动力学的优点,同时具有程序简单
论文部分内容阅读
连铸过程中,结晶器内的流场分布决定着初生凝壳生长、保护渣熔化、夹杂物上浮等冶金传输行为,研究考察结晶器内的流动与传输特点,对于连铸坯质量控制具有重要意义。由格子气自动机(Lattice Gas Automation,LGA)发展而来的格子玻尔兹曼方法(Lattice Boltzmann Method,LBM)是一种介观尺度的模拟方法,兼具宏观尺度连续模型和微观尺度分子动力学的优点,同时具有程序简单、边界条件施加方便和易于并行化等优势,在微观和介观尺度流动问题的模拟研究中得到了广泛应用,但目前将LBM应用于连铸领域的研究仍不多见。本文旨在开发基于LBM的结晶器内流动行为数值计算方法,尝试构建结晶器内流动过程的LBM计算模型,开发专用数值计算程序,对LBM计算连铸钢液流动行为的适用性和可行性进行探讨。首先,解析和推导了格子玻尔兹曼方程的建立过程,阐述常见LBM模型与边界条件的处理方法,选择并确定了DDF-LBE计算模型对流动过程建模,编制和开发相应的计算程序,对顶盖驱动流、泊肃叶流两个经典的流动算例进行计算,获得流动与温度的分布特征并与已有研究结果进行对比,以验证模型与计算程序的正确性。以此为基础,以方坯直通型水口的结晶器流动过程为研究对象,建立相应的物理模型,选取雷诺数Re为相似准数,依据相似准则对实际参数进行无量纲化处理,模拟计算结晶器内流场,得到连铸过程中结晶器内钢液的流动特点。分析和考察不同雷诺数下的流场涡心位置等特征,分析雷诺数对流场紊乱程度的影响,进而确定适于模拟小方坯结晶器钢液流动的雷诺数。之后,计算了不同拉速、水口浸入深度和铸坯断面尺寸等工艺参数下的结晶器流场,对结晶器钢液流场的涡心位置、冲击深度和速度分布等特征进行讨论,探讨不同工艺参数对流场分布的影响,为小方坯结晶器流场及浇铸工艺优化提供参考。
其他文献
由于无线通信环境的复杂多变,天线正朝着集多功能于一体的方向发展,可在同一天线上实现频段的切换、方向图的切换或者是极化的切换。目前对相关课题的研究,关于方向图的切换
随着能源危机、环境污染等问题的日益严重,机电复合传动技术成为各国竞相研发的热点。本文以某功率分流式机电复合传动系统为研究对象,分别对其进行稳态匹配优化研究和动态匹配优化研究。通过稳态匹配,得到机电复合传动系统最优的边界值;通过动态匹配对系统工作点进行优化,改善系统性能。基于机电复合传动系统稳态特性关系,对电机参数对系统工作性能的影响,尤其是发动机和两电机在工作点上的相互影响关系进行了分析。提出动力
在航空航天、建筑工程等领域,纤维增强复合材料和点阵结构具有高比强度、高比刚度等力学性能而得到广泛应用。传统的制备方法,如缠绕、注塑成型,均存在制造时间长、工艺繁琐
太赫兹波是指频率范围为0.1 THz到10 THz的电磁辐射波,在无损检测、成像、通信、国防安全等应用领域和物理、化学、生命科学等基础研究领域均具有重要作用。太赫兹波的应用与
电子商务和互联网的发展引发了一场银行电子商务化的革命,使银行手工办理业务的方式转变为在线智能办理,也改变了银行和客户之间的关系。2012年,建设银行电商平台“善融商务
自从惠普实验室以两层二氧化钛薄膜材料成功研发出纳米级忆阻器件实体以来,新型的非线性忆阻器逐渐在不同领域中崭露头角。通过对忆阻器的深入研究发现,当多个忆阻器以不同拓
非晶合金由于其内部没有位错、晶界等缺陷而具有高的强度、硬度、弹性极限等优点,广泛应用于航天军工、体育用品、医疗器械等方面。目前,人们已经开发出多个具有较强玻璃形成
当代中国,法治已经成为举国认同的治国模式,司法权的地位获得极大提高。法治的基本要求之一便是审判独立,但是,现代政治理论告诉我们,仅凭公权力的掌控和运用者的自律,很难防
奥氏体锰钢作为传统的耐磨材料,自其发明以来就广泛的应用于工业中。而通过降低传统锰钢中碳锰含量获得介稳态的奥氏体中锰钢,其在中低载荷冲击工况下表现出优于高锰钢的耐磨性能。但奥氏体中锰钢铸造性能差,加工精度低,制约着奥氏体中锰钢工件的生产,同时锰钢密度在7.65-7.95g/cm3之间,其铸件笨重,增加了加工、运输、维护的费用。当下我国政府大力提倡使用新型环保节能材料,保证奥氏体中锰钢耐磨性能的基础上
螺旋伞齿轮具有传递扭矩大、传动平稳、噪声低等特性,广泛应用于重型车辆传动系统中,但是螺旋伞齿轮的设计制造在各类齿轮中较为复杂,质量控制非常困难。磨削是提高齿轮啮合精度、齿面粗糙度以及消除热处理变形误差的重要手段,但目前在螺旋伞齿轮的制造环节中缺乏对磨削表面完整性方面的研究,导致产生许多磨削损伤进而影响产品的合格率,所以亟需开展螺旋伞齿轮表层性能试验研究,对齿面表面完整性方面进行优化控制,从而提高齿