抽象素数定理及广义黎曼假设的判别准则

来源 :山东大学 | 被引量 : 0次 | 上传用户:cs_200901
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
素数定理是解析数论中最重要的定理之一,它可以陈述为当x→+∞时,不超过x的素数的个数π(x)渐近于x/logx,即1970年,John Knopfmacher[1]-[8]发展了抽象解析数论并建立了所谓的抽象素数定理。为了陈述Knopfmacher的结果,我们引入一些基本的符号和概念. 设G是可交换的半群,单位元是1.我们用P来表示G中所有生成元的集合,也就是G中所有素元的集合,并在G上定义范数|·|.我们称(G,|·|)是一个算术半群,若它满足下面的条件: (ⅰ)唯一分解原理。 G中每一个元素a≠1有唯一分解形式这里pi是P中不同的元素,αi是正整数。 (ⅱ)|1|=1,|p|>1其中p∈P。 (ⅲ)|ab|=|a||b|对于所有的a,b∈G. (ⅳ)对于x>0,G中满足|a|≤x的元素a的个数NG(x)是有限的。 为了研究半群G中素元的分布,Knopfmacher引入了下面的公理。 公理A.存在正常数A,ε和η,0≤η<δ,使得 NG(x)=Axδ+O(xη), x→∞. 假设G是满足公理A的算术半群.对于实数x>0,令πG(x)是P中满足|p|≤x的元素P的个数,即 Knopfmacher[9]最初利用Ikehara’s Tauberian定理证明了这个结果,它可以和(0.1)进行比较.而后Wegmann[10]给出了一个稍微强一点的形式,即对于任意的a>0, 本文的主要目的之一是给出抽象素数定理的一个更强的结果.为此,我们在G上定义抽象zeta函数并在第一章给出ζG(z)的非零区域. 定理1.1.存在正常数c1>0,使得ζG(z)在下面的区域中没有零点,其中|t|≥2. 定理1.1对研究半群G中素元的分布起了重要的作用.利用定理1.1我们在第二章给出了πG(x)的渐进公式. 定理2.1.设x≥2,则存在某个正常数c2>0使得其中Ψ(x)的定义由第二章给出. 做为定理2.1的推论,我们有下面的结论。 定理2.2.当x→∞时,我们有 这里c2是定理2.1中的常数。 1954年,W.Forman和H.N.Shapiro[13]在公理A*的假设下证明了关于formation的抽象素数定理。从而将算术数列中的素数分布问题推广到更一般的算术formation的等价类中素元的分布.为了表述其结论,我们首先引入一些符号。 设X是保单位元的同态映射x:G→C×构成的有限abelian群.通常我们把x称为特征.在G上定义等价关系~X, a~X b当且仅当x(a)=x(b),对于所有的x∈X.设гX(简记为г)是上述等价关系下所有不同的等价类的集合,(G,г)称为算术formation,X称为由formation(G,г)确定的特征群.这说明G满足公理A.因此满足公理A*的formation的理论实际上是满足公理A的算术半群的理论的一般化. 假设(G,г)是满足公理A*的算术formation.对于x>0,设 本文的另一主要目的就是给出πH(x)的一个渐进公式.为此,我们定义G上的关于特征x的抽象L-函数对于给定的formation,抽象L-函数与算术半群上的抽象zeta函数有着类似的作用.它的非零区域可以用来研究formation的等价类中素元的分布.我们将在第三章给出LG(z,x)的非零区域. 此外,本文还研究了GL(2)上的经典自守形式,也就是全纯尖形式对应的自守L-函数,对于上述L-函数,我们给出了广义黎曼假设的判别准则. 众所周知,Nyman-Beurling准则是指黎曼假设等价于(0,1]区间上的特征函数x1(x)在平方范数意义下可以被1/ax的线性组合逼近,这里a是大于1的实数。2003年,Baea-Duarte对于黎曼假设给出了一个加强的Nyman-Beurling准则.他指出如果a是正整数,那么上述结论也是成立的,并且构造了一个逼近序列(),其中μ是Mobius函数。利用Baea-Duarte的方法,我们推广了Nyman-Beurling准则,给出了关于对应于全纯尖形式的自守L-函数的广义黎曼假设(GRH)的判别准则.
其他文献
矩阵Drazin逆在许多领域中都有着非常广泛的应用,如奇异的微分方程,奇异的差分方程,算子理论,Markov链,密码学,迭代算法等方面。因此,从上世纪中期以来,矩阵的Drazin逆就成为一个非常
多调和函数作为多项式函数的最直接的推广,其理论在偏微分方程,数值计算,小波分析,多复变函数论,弹性理论,雷达成像等领域中有许多重要应用.Al—mansi分解定理是多调和函数理论的核
样条作为计算几何中表示和逼近几何对象的基本工具,在很多工程领域有着重要而广泛的应用.鉴于客观事物的复杂多样性,开展多元样条函数的研究,无论是理论上还是应用上都有着重要
众所周知,许多生物和化学现象都呈现振动现象及扰动以有限速度传播的现象,而类似u(x,t)=u(x-ct)形式的行波解正好能表现这两个性质.并且,反应扩散方程的行波解是指一类特殊的空间
由计算机创始人John von Neumann提出的细胞自动机(Cellular Automata,CA)是一种时间、空间和状态都离散的数学模型.从数学角度看,CA是与连续Cantor映射动力学系统相对应的离散
成立于1991年5月的联华超市股份有限公司(以下简称联华超市),是中国第一家具有民族商业烙印的本土化超市,也是国内第一家以连锁经营为概念、在香港挂牌上市的超市公司。经过1
近年来,分形几何领域发展迅速,已经成为一门新兴的数学分支,它越来越多的应用到自然科学的各个领域,备受人们的重视,同时它也是我们国家优先发展的科题之一,然而分形的整体或局部都