【摘 要】
:
随着我国高速铁路发展战略的不断深入,部分线路不可避免采用了有砟轨道结构。因此针对高速循环动载荷作用下有砟轨道存在的诸多问题,开展相关的技术分析刻不容缓。离散单元法的引入有效地解决了传统使用连续介质方法在分析散体道砟颗粒时特有的缺陷。然而该方法应用于该方面问题研究时仍然存在瑕疵,主要方面之一是数值模型中道砟的形态特征难以通过数值的形式与实际建立紧密的联系,导致了数值分析结果没有细致入微。因此为了更加
论文部分内容阅读
随着我国高速铁路发展战略的不断深入,部分线路不可避免采用了有砟轨道结构。因此针对高速循环动载荷作用下有砟轨道存在的诸多问题,开展相关的技术分析刻不容缓。离散单元法的引入有效地解决了传统使用连续介质方法在分析散体道砟颗粒时特有的缺陷。然而该方法应用于该方面问题研究时仍然存在瑕疵,主要方面之一是数值模型中道砟的形态特征难以通过数值的形式与实际建立紧密的联系,导致了数值分析结果没有细致入微。因此为了更加精确地对高速铁路有砟轨道问题进行模拟分析,如何使数值模型与实际情况建立紧密的联系成为本文的工作重点。为此,论文量化了特级道砟的形状,棱角和纹理特征。使用扁平细长率FER对道砟形状进行分析。为了更精确的表征棱角,提出了分离方法以分离颗粒图像中的棱角和纹理特征。在获得棱角图像和纹理图像的基础之上,修改了原先的棱角指标AI和提出了纹理指标TI。提取了特级道砟的FER,AI和TI值,并且研究了其统计分布。使用粗集料松装空隙率试验验证了所修改的棱角指标和提出的纹理指标的有效性。量化分析结果为在离散单元法中道砟颗粒的生成方法研究提供了实际道砟形态特征数值分布。论文引入摄影测量方法对道砟进行三维重构,并在颗粒流程序PFC中生成真实的道砟簇颗粒模型。基于此论文提出了一种关联实际道砟形态的离散元颗粒生成方法。该方法首先对道砟形态特征进行量化分析,以得到道砟的形态表征数值分布;然后,从特级道砟数据库样本中选择典型的道砟颗粒生成颗粒模板;最后,通过控制生成颗粒的体积分数,从而使数值模型中道砟颗粒达到指定的特级道砟形态表征数值分布各区间范围内的颗粒质量占比。该方法使得在离散元程序中生成的道砟形态特征以数值分布的形式关联实际,为高速铁路有砟轨道研究提供了一个很好的建模方案。为了使离散元数值模拟结果能够反映真实的力学行为,论文通过先前研究的试验结果,初步标定了离散元模型中道砟颗粒的细观接触力学参数。同时,论文设计了高速铁路道砟直剪试验装置并在离散元程序中建立了一个关联实际试验模型的高速铁路道砟直剪数值模型,通过数值模拟与实测结果的对比,进一步验证了道砟颗粒的细观接触力学参数。最后论文对高速铁路道砟直剪行为进行了细观力学分析,揭示了高速铁路道砟在直剪过程中的细观力学特性。
其他文献
量子保密通信是经典通信理论和量子力学基本原理相互交叉产生的新兴技术,它具有无条件的安全性。经过三十余年的研究,量子保密通信技术已经从实验室向规模化实际应用迈进,基于量子密钥分发(QKD)的量子保密通信是最先获得应用的一种形式。基于互联网之上的云计算使普通用户可以方便地享有高质量的计算资源,而不需大幅提高自己的计算成本,因而其应用蓬勃发展。然而,云计算网络中存在严重的安全缺陷,给用户数据带来严重安全
耐候钢因其卓越的耐大气腐蚀性能和低维护成本而在车辆、桥梁、输电线路铁塔等基础设施得到了普遍应用。耐候钢具备杰出耐蚀性能的主要原因在于其在Cu、Cr、Ni等合金元素的作用下逐步生成了一层紧实程度高且具有阳离子选择性等特征的锈层。锈层的主要成分、致密程度等决定了其防护性能的优劣。表面保护性锈层的生成是循序渐进、逐步形成、稳定的过程,在自然环境中此过程需要3年10年的时间,然而在保护性锈层形成的前期容易
近年来,随着科技的快速发展和人们经济水平、消费水平的不断提高,私家车出行因其舒适、方便和快捷逐渐成为城市交通中最为流行的出行方式,辅助驾驶系统也在行车过程中扮演着重要角色。行驶车辆的检测与跟踪是辅助驾驶系统的重要组成部分,然而由于行车环境复杂、车辆之间互相遮挡、光照变化等,车辆的检测与跟踪仍然面临着巨大的挑战。鉴于此,本文主要对以下内容进行研究。小目标车辆的检测。现有的车辆检测算法对远距离的小目标
基于一次铝硅合金中硅、铁杂质含量过高的问题,本研究利用电磁定向凝固结合中和元素Mn的技术手段,在一个实验过程中同时分离去除一次铝硅合金(35wt.%Si,5wt.%Fe)中的硅及富铁相。一方面,铝硅合金中硅和铁相被分离至底部便于去除;另一方面残留在铝硅合金中富铁相形态也得到了改善,从针状形态逐渐改善为树枝状、汉字状、块状及骨骼状,减小了富铁相在铝硅合金性能方面的不利影响。本文对电磁分离一次铝硅合金
恶意软件对网络安全的威胁备受关注,每天都有数百万个新的恶意软件出现,影响着成千上万的用户。但绝大多数的恶意软件都是基于原有恶意软件的重用或者复用。攻击者可以完全自动化的设计和重用恶意软件,这使得网络犯罪的门槛越来越低。对海量的恶意样本进行快速的分类和归档,可以加速对新的恶意软件的检测和对相同家族恶意软件的版本更新梳理。因此,我们迫切需要一种检测技术,可以应用于当前快速变化的恶意软件生态系统。本文针
随着移动通信技术的不断发展革新,5G通信时代离我们越来越近了。与4G系统相比,5G通信系统的主要区别之一就是向毫米波频段的转变,美国联邦通信委员会为5G应用指定了 27.5~28.35GHz频段,这种频段上更容易获得更宽的带宽且可以实现预期的高数据速率和系统容量。而随着5G通信系统的不断发展,智能通信设备也在不断革新,特别是手机和智能穿戴设备。而5G移动终端的演进技术为其天线系统带来了巨大挑战,天
石墨烯自2004被发现以来,其独特的二维蜂窝状结构、较低的电子噪声、超高的电子迁移率和比表面积、以及室温下可导电和优异的力学特性等优点,引发科研工作者们的研究热潮;其超高的比表面积以及电子迁移率使得这种材料在气敏传感领域有极大的应用潜力。本论文通过化学气相沉积法(CVD)在镍泡沫和镍纳米线上生长出了三维结构的泡沫石墨烯和管式石墨烯,并研究了其对于NO2气体的气敏特性。具体的研究和实验内容如下:(1
近年来,在信息化全面发展的趋势下,电子、智能化等技术取得了飞速的发展。与此同时,雷达在现代电子战中面临着越来越复杂的电磁环境和越来越严重的干扰问题。在干扰背景下,传统雷达作战效能难以发挥,且因为其原理性的特点易被限制和针对,基于数字射频存储(DRFM)技术的欺骗式干扰已经成为了现代雷达面临的一个严重威胁,因此雷达抗干扰具有十分重要的意义。极化雷达作为一种新型体制雷达,在对抗转发式干扰方面具有独特的
随着科学技术的发展和人们对生活质量要求的提高,对不可再生能源比如煤,石油,天然气的使用,既不具备长期发展性同时也对空气质量产生负担。众所周知,氧气催化反应和水电解反应作为金属空气电池和燃料电池的重要理论组成,使得人们对这类催化剂的研究十分火热。其中Pt、Ru02、Ir02作为高效催化剂存在高成本,地球丰度低,以及不可同时作为多功能催化剂的缺点。因此,开发廉价的非贵金属甚至是三功能催化剂是电池在实用
甲状腺癌是内分泌系统最常见的恶性肿瘤,也是全球发病率增长最快的恶性肿瘤之一,其中乳头状癌约占甲状腺癌的80%。甲状腺乳头状癌的早期治愈率高达90%,然而,此类癌症淋巴转移率较高。因此,甲状腺乳头状癌的早期诊断对防止病情恶化有重要作用。在众多的诊断方法中,病理检查是敏感性和特异性最高的方法,面对日益增长的病理切片样本,如何使用计算机技术辅助病理学家进行诊断,减轻病理医生负担是当前亟待解决的关键问题。