【摘 要】
:
纳米流体在高效传热冷却等许多重要领域都有广泛的应用潜力,因此,近年来这类流体的热物理性质成为了重要的研究课题。粘度是纳米流体的一个非常重要的性质,特别是在流体流动和传热的实际应用中,对流换热和泵送功率等都与粘度系数有直接的关系,但目前对纳米流体粘度的研究还不够深入。传统的实验方法仅能从唯象论的角度观察现象,且不同的研究得到的结论具有较大的不一致性,难以解释微观机制。因此,本文采用基于精确势能模型的
论文部分内容阅读
纳米流体在高效传热冷却等许多重要领域都有广泛的应用潜力,因此,近年来这类流体的热物理性质成为了重要的研究课题。粘度是纳米流体的一个非常重要的性质,特别是在流体流动和传热的实际应用中,对流换热和泵送功率等都与粘度系数有直接的关系,但目前对纳米流体粘度的研究还不够深入。传统的实验方法仅能从唯象论的角度观察现象,且不同的研究得到的结论具有较大的不一致性,难以解释微观机制。因此,本文采用基于精确势能模型的分子动力学方法模拟真实材料,来研究纳米流体的相互作用,从而理解纳米流体的粘度系数的增强机理,在涉及流体精密控制的工程领域有重要意义。本文首先介绍了纳米流体粘度的分子动力学的研究现状,指出传统的经验模型和实验方法的局限性,经验模型无法预测纳米尺度的颗粒悬浮液的粘度,实验方法难以得到统一的结论,然后对比了SPCE、TIP3P、TIP4P\2005这三种刚性水模型预测粘度的准确性,用TIP4P/2005水模型和Lennard-Jones势函数建立基液系统,计算了不同温度下基液的剪切粘度,并于实验值进行对比,验证了该水模型在预测粘度方面的准确性。将金属银颗粒与TIP4P\2005水基液系统建立纳米流体模型,采用Morse力场描述银原子之间的作用,将银颗粒的体积分数、环境温度、颗粒粒径作为变量,考察三个因素对粘度的影响,采用基于Green-Kubo公式的平衡分子动力学粘度计算法分别计算了不同条件设定下流体的剪切粘度。然后采用反向非平衡分子动力学方法(Muller-Plathe法)验证了平衡法计算结果的准确性,同时计算了自扩散系数和不同体积分数下纳米流体剪切粘度与剪切速率的关系,考察了流体的流变性质。水基银纳米流体粘度相关性的计算结果显示体积分数、温度和粒径均对剪切粘度值有所影响,粘度值与温度呈现负相关,体积分数与粘度值为正相关,颗粒大小对粘度的影响较小,颗粒减小,粘度值略微增加。高体积分数下的纳米流体表现出剪切稀化的非牛顿流变性质。通过对流体体系径向分布函数的分析,银颗粒的添加显著影响了流体结构,高体积分数下颗粒对水分子的强相互作用对原子分布产生了较大的影响,导致颗粒与水分子形成了微结构,这是纳米流体粘度增强和剪切变稀现象产生的主要原因。
其他文献
高分子是一种用于硅晶片表面功能化修饰与改性的良好材料。利用高分子化学的键合手段,可以保持硅晶片基体与修饰分子之间的良好接触与稳定结合。表面接枝方法是基体表面功能化修饰的一种有效的改性方法。通过表面接枝法在基底表面形成功能性聚合物层,为硅晶片表面修饰开辟出了更加广阔的应用前景。论文首先采用功能性硅烷偶联剂KH570对硅晶片进行修饰,得到初步修饰的硅晶片Si-KH570。通过自由基聚合法在硅晶片Si-
复合材料因其优异的性能在航空航天、交通运输等领域得到了广泛的应用。然而,由于复合材料独特的层状结构使其在受到冲击后易在层间处产生裂纹,进而出现分层等损伤。提高复合材料的层间强度可以有效提高材料的抗冲击性能,因此复合材料增韧研究逐渐受到人们的重视。本次课题主要研究提高碳纤维树脂基复合材料层合板以及铝/碳纤维叠层复合材料层合板的层间强度的方法,通过各种方法提高复合材料的界面结合能力进而增强复合材料结构
泡沫夹层结构预制体是复合材料的一种特殊形式,由芯层和两面层组成,通过组合不同芯材和面层材料,利用每个层间特性来达到不同的功能。硬质泡沫夹层结构预制体具有强度高、质量轻、隔音性和隔热性等优良特点,目前主要应用于航空航天、船舶和建筑等领域。为实现硬质泡沫夹层结构预制体自动化缝合,本文在国内外预制体缝合成型装备研究现状的基础上,围绕带预刺功能硬质泡沫夹层结构预制体缝合技术进行研究,主要研究内容为:对Tu
具有潜热储存和释放、光致变色等多种性能的可逆光致变色储能聚脲/聚氨酯微胶囊受到了广泛的关注,因为其既可以改善相变材料在实际使用过程中的泄露、过冷等问题,又可以使光致变色染料不被氧气、p H、温度等外界环境影响。同时,其在户外穿戴、光装饰材料、防伪技术等领域有着重要的商业价值。本文选用硬脂酸丁酯为芯材,新型油溶性的聚天门冬氨酸酯中的F2850胺与异佛尔酮二异氰酸酯(IPDI)反应生成的聚脲为壁材,通
碳纤维增强复合材料(CFRP)具有高强度、高模量等优点,被广泛应用在航空航天、国防军工等领域。然而,CFRP复杂的多相结构和高度的各向异性导致在钻削、铣削加工过程中极易产生分层、起毛、撕裂等加工缺陷,严重降低CFRP构件的机械性能及疲劳寿命。为了实现CFRP的低损伤加工,需要从细观层面对CFRP的切削机理进行研究。因此,本论文首先建立变未切削材料厚度下切削力预测模型和缺陷预测模型,然后建立全切削纤
相变材料是一种能在相转变过程中吸收或释放热量,从而达到热能储存和温度调节功能的物质,利用相变材料的相变潜热可以实现能量的储存和利用,在建筑、蓄冷、航空等领域有着广泛的应用。但是相变材料在使用过程在也存在一些问题:无机相变材料会出现过冷现象和容易发生相分离,有机相变材料体积变化大易泄露,这对相变材料的大规模生产和应用带来了限制。将相变材料制成微胶囊,使相变过程始终处于微胶囊内部,是一种简单有效的改性
具有光致变色、储热调温的多功能智能材料受到人们的广泛关注,在智能服装、建筑材料、可穿戴智能传感器等领域具有广阔的应用前景。本文的主要研究成果如下:为获得优良的热密实度和热稳定性的相变材料,选用正十八烷作为芯材,并以三聚氰胺-甲醛树脂为硬模板水解正硅酸乙酯(TEOS)合成微胶囊的壁材,采用原位聚合法制备的有机无机复合型MF/Si O2微胶囊。首先,探索TEOS合成微胶囊壁材的最佳水解条件为p H值分
为了减少化石燃料类能源的消耗,同时提高能源的利用率,人们采取了许多办法,其中热能储存系统的能源经济性是缓解化石燃料消耗的重要手段。相变材料(PCMs)的高潜热可以实现大量热能的储存和释放,从而使之成为一个极具发展潜力的研究领域。与无机PCMs相比,有机PCMs具有许多优点,如稳定性好,重复性高,无相分离和过冷等,其中对有机的固-液PCMs(SLPCMs)的研究较广。然而SLPCMs在相转变过程中的
相变材料是一类应用广泛的储热材料。许多相变材料存在热导率低、形状稳定性差等问题。使用石墨烯泡沫或气凝胶可以一定程度上解决这些问题,但目前缺乏批量、高效、低成本的制备技术,而且大多存在机械强度低或者脆性大的问题,实用性差。本文针对这些问题,发展了基于三聚氰胺泡沫(MF)模板的循环浸渍沉积法,研究了氧化石墨烯(GO)基复合泡沫及复合相变材料的制备、结构、性能和应用。首先,通过循环浸渍沉积法制备了MF@
2015年5月1日我国施行了《石油库设计规范》(GB50074-2014)标准,原国家标准“石油库设计规范”GB 50074-2002同时废止。根据相关法律法规要求,我国在役油库需制定整改计划,定期开展风险评价工作,以保证可逐步提升安全管控水平,满足《石油库设计规范》相关要求。但我国目前运行的大量油库均不符合标准要求,亟需整改。为了满足国家关于成品油库的相关标准要求,同时实现经济效益最大化,切实改