钛酸钡在Si基板上的制备及其作为MOS和磁电耦合单元应用的探索

来源 :浙江大学 | 被引量 : 0次 | 上传用户:kcl770514
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
钛酸钡材料(BaTiO3,BTO)沉积到Si基板之后形成的BTO/Si异质结构在MOS晶体管、太阳能电池等领域表现出了巨大的应用潜力。对于这种氧化物/Si结构来说,界面处形成可控的且强度够高的内建电场至关重要。然而,对于传统的晶态氧化物,受到材料固溶度的限制,通过掺杂的方法难以在不改变材料性能的同时获得满足器件要求的载流子浓度。因而探索一种新的方法来控制材料中产生足量且可控的可参与形成内建电场的有效载流子对拓展相关半导体器件的应用有重大意义。本文以p-Si(111)为基板,利用RF磁控溅射在室温下先沉积而后再进行后续热处理的方法制备出了具有某种特定网络结构的非晶态BTO薄膜。结果发现,非晶态BTO薄膜的网络结构状态可以通过退火进行调整:退火温度从沉积态升高到420℃时,Ti与O之间不断地通过共价键进行键合,Ti-O网络逐渐完整,这将使O 1s与Ti 2p的结合能差从71.53eV升高到71.67eV;当退火温度继续升高时,Ti-O网络畸变程度下降,O 1s与Ti 2p的结合能差开始下降。Ti-O网络的这种不同的形成状态决定了BTO/p-Si界面处内建电场的大小:当退火温度低于340℃时,BTO/p-Si异质结的平带电压仅约为-3V;而当退火温度达到370℃及以上时,平带电压剧烈改变,达到了约-13V;而当退火温度继续升高到500℃时,平带电压恢复为约-3V;对于700℃退火的晶态BTO薄膜,其平带电压仅为-1V左右。另一方面,针对目前难以在Si基板上获得具有1-3型结构复相多铁薄膜的难点,本文利用RF磁控溅射在p-Si(111)基板上制备了BTO与Ni0.5Zn0.5Fe2O4(NZFO)复合形成的BTO-NZFO复相薄膜。结果表明,800~1000℃的退火处理将使薄膜中的NZFO呈独立颗粒状分布,颗粒尺寸约为1μm,使薄膜表现出类似1-3型的结构,并且这些NZFO相具有(100)的晶体学择优取向。
其他文献
目的:研究酵母细胞中Whi2蛋白对自噬的调控机制。方法:通过同源重组法构建基因缺陷型酵母菌株,通过转入特定质粒过表达相关蛋白。利用prATG8-GFP质粒检测特定营养条件下细胞
速调管是一种基于周期性调制电子注速度实现振荡或放大的微波电子器件。相对于单注速调管,在结构方面多注速调管拥有更多的电子注数目,而在性能方面多注速调管具有更高的输出功率和增益、更高的电子转换效率,同时可以实现低电压情况下更宽频带内的能量转化。多注速调管由于其独特的优越性引起更广泛的关注,目前已成功应用于雷达导航、探测辐照、直线对撞机等领域。本文分别对多注速调管高频互作用系统和输入输出系统进行理论研究
本文主要研究在Rn空间中的一类线性常微分方程的时间最优控制问题,其控制约束集为矩形型控制约束集.首先建立时间最优控制问题和范数最优控制问题的等价性定理.其次得到最优时间和时间最优控制的充分必要条件.最后给出一种计算最优时间和时间最优控制的数值方法.在已有的结论中线性常微分方程的目标集是原点,然而本文考虑的控制系统的目标集是包含原点的闭球.本文共包括五章:第一章为绪论,主要阐述本文的研究背景和研究内
生物序列是指DNA序列或蛋白质氨基酸序列。多序列比对是指三条以上类似长度的生物序列的比对。所谓序列比对是指具有两序列最优相似性的对准排列。由于高通量测序等生化技术
进入20世纪以来,人类社会经济以大量消耗化石能源为代价取得了突飞猛进的发展。依靠石油裂解生产的低碳烯烃的需求日益广泛,不仅造成世界各国都将面临石油短缺的严峻问题,还
禽白血病(Avian Leukosis,AL)是由禽白血病病毒(Avian leukosis virus,ALV)引起的鸡良性或恶性肿瘤性疾病。自报道以来,AL给世界各地养禽业造成了较大的经济损失。至今,尚无有效
儈层语义是非语言信息逐步积累的结果,表现为物理和机械世界的难以用语言表达的知识。儈层语义特征是数据本身所具有的,有利于提升网络性能的信息。目前主流的深度神经网络是
溶剂冰冻模板法方法简单、可制备孔结构高度可调的多孔材料,近年来受到了学者们的广泛关注。所得多孔材料广泛应用于吸附分离、细胞培养支架、仿生结构等方面。但是,使用这种
多金属氧簇(POMs)是具有特殊三维结构的过渡金属-氧纳米簇,主要是由高氧化态(通常为d_0或d_1)的第V A和第VI A金属(以V,Mo和W为主,Nb和Ta较少见)制成的纳米级金属氧化物,其尺寸在0.8 nm至6 nm之间。POMs具有良好的水溶性、氧化还原性和热稳定性,这些性质使得它们在催化、分子磁性、生命科学、可持续能源、电子、传感器、放射性核素捕获等领域具有许多实际和潜在的应用。含钼多金
两亲性嵌段共聚物自组装可以形成各种丰富的形貌,如囊泡、胶束等。这些自组装结构可广泛应用于生物医学、涂层材料、传感器、纳米印刷等领域。传统的自组装技术通常要求先通过聚合反应合成两亲性嵌段共聚物,然后,由于不同嵌段间亲疏溶剂性质的差异,嵌段共聚物可以自发地形成各种形态,以达到热力学稳定状态。然而,整个加工工艺不仅复杂,而且聚合后还需要产物的纯化过程。而且,这种传统的自组装技术只在稀溶液中进行,而在实际