论文部分内容阅读
钛及钛合金具有一系列优良的性能。然而,在某些应用条件下,钛合金的硬度低,摩擦系数大,耐磨性差。因此,有必要对钛合金进行表面改性处理,以扩大其在工程上的应用范围。 本文利用瞬态电能表面强化与多弧离子镀技术(Multiple Arc Ion-Plating,简称MAIP)相结合,获得复合表面强化层,以协同提高Ti17的耐磨和减摩性能。首先,在硅油介质中,采用5种电极和3组电参数对Ti17进行瞬态电能表面强化。通过MM200磨损试验,优选出两种较优的工艺。然后结合在氩气的保护下优选的两种工艺,以及在水玻璃中的两种工艺,选用2种靶材,采用多弧离子镀技术又沉积一层镀层,以得到既耐磨又减摩的复合强化层。球-盘磨损试验之后,找出最优的复合强化工艺。试验过程中用SEM和XRD分析了强化层的形貌和物相组成,用显微硬度计测量了硬度沿深度的分布,并测试了其热疲劳和微动疲劳性能。 在硅油介质中,五种电极形成的瞬态电能强化层都较薄。最厚的强化层是用YG8电极形成的,大约10μm。所有强化层的组织均比较细小、均匀,但强化层中有少量的气孔与显微裂纹存在;强化层的硬度为470 HV-500HV,较基体的硬度有很大的提高。在硅油介质中两种耐磨性较优的瞬态电能强化工艺为:YG8电极40V、180μF的电参数下得到的强化层,其耐磨性是未强化试样的70倍左右;其次是用硅青铜电极30V、1500μF的电参数下得到的强化层,其耐磨性是未强化试样的30倍。 球-盘磨损试验结果表明最优的复合强化工艺是在氩气的保护下,采用60V、180μF的电参数,YG8电极瞬态电能强化后用多弧离子镀技术又镀覆一层合金铜层,其滑动磨损性能是未强化试样的3.5倍。该复合强化层较厚,最厚的地方有近25μm;表面成分主要为Cu,还有少量的Ni和Si;其硬度为625HV左右。50次热循环后,复合强化层表面无剥落现象,试样内部没发现大的裂纹。但微动疲劳性能有所下降。